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A B S T R A C T   

An exploration information system (EIS) is a way of creating, and managing exploration targets and should 
include the entire process from conceptual mineral system models to, modelling the mineral system using 
available data, to generation of targets or prospect areas. The main goal for any EIS is to help find new mineral 
deposits that are economic to mine and process at the financial conditions of the time. Prioritisation and man-
agement of exploration targets is a key to success in mineral exploration, particularly with the increasing use of 
mineral potential modelling techniques, including AI, which can generate a large number of targets in a study 
area for testing. In this paper, we present ideas for the components for an EIS designed to optimise the mineral 
exploration process and provide critical decision-making support. The Macquarie Arc porphyry copper-gold 
mineral system in New South Wales is used as an example to illustrate how such a system can be developed 
and implemented. Accepted mineral potential mapping workflows are used coupled with a targeting process that 
generates, attributes, and ranks prospect areas to produce exploration targets. The proposed front-end of the EIS 
is an Exploration Management Dashboard, which can be used by executives and managers to facilitate informed 
decision-making and optimal allocation of capital. We advocate for a standardised system capable of accom-
modating various commodities, input datasets, and diverse analytical techniques, including AI-driven methods 
and validation tools. Flexibility for user customisation, especially for non-technical users, and real-time data 
integration are seen as an essential part of any EIS. Furthermore, the system is designed to be dynamic, with 
continuous updates and improvements as new data are collected, ensuring that exploration is always focussed on 
the areas with the greatest potential prospectivity.   

1. Introduction 

The mining industry depends on mineral exploration to continue to 
provide the metals and minerals that society depend on. Exploration or 
prospecting, as it was known historically, depends on the recognition of 
geological features that can be used to find new economic deposits of 
metals and minerals in the Earth’s crust (Böhmer and Kucera, 2013). 
Since the first recorded mining activities for flint to make tools in 
Neolithic times, to mining ochre at the 43,000 year old Ngwenya Mine in 
Eswatini (Swaziland), or the Ancient Egyptians who first mined mala-
chite (copper) for ornaments but advanced to mine gold from the mines 

of Nubia, exploration has involved reconnaissance of selected areas for 
the required geological features, for example, green and blue coloured 
rocks suggest the presence of malachite or copper. The science of 
exploration has advanced since the days of prospecting on foot due to 
improved knowledge from research into the genesis of ore deposits, to 
the ability to collect regional-scale data consistently, extensively, and 
rapidly, and more importantly the ability to analyse the various data 
using computer techniques to allow the discovery of new metal and 
mineral deposits (Okada, 2021 and references therein). The power and 
speed of the new computer technologies and modelling techniques, 
including artificial intelligence (AI), means the management of mineral 
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exploration and its outcomes (prospects) have become more critical. 
And as discovery rates decline it is ever more important to invest finite 
capital into the prospects that have the best chance of economic success. 

Mineral exploration targeting is a scale-dependent process that starts 
at global to regional scales, with follow-up exploration used to vector 
into new discoveries at local and mine scales, down to the scale of 
planning the location of drill holes (Hronsky, 2004; Hronsky and Groves, 
2008). Most exploration targeting in the last fifty years has been per-
formed by searching prospect information from mineral occurrence 
databases and geological maps or subjectively choosing areas based on 
past experience or local prospecting knowledge. While these targeting 
methods, which largely rely on near surface exploration techniques, 
have been effective in the past, many areas have been subject to multiple 
cycles of exploration that have now either exhausted near surface po-
tential, or simply failed to identify less well exposed mineral deposits. 
The advent of modern data collection and storage technologies and a 
global effort by national geological surveys to provide precompetitive 
digital data has resulted in a huge increase in data volume (Hill et al., 
2020). This means exploration decision-making has become much more 
complex at a subjective level. Past exploration approaches also often fail 
to incorporate the recent advances that research has made in the un-
derstanding of mineral systems that provide the geological context for 
discovery. 

The science of Mineral Potential Modelling (MPM) has now become 
an important technique for mapping exploration prospects. The tools 
and data available for MPM have come a long way since the publication 
of “Geographic Information Systems for geoscientists - Modelling with 
GIS” by Bonham-Carter in 1994 (Bonham-Carter, 1994), including ad-
vances in technology that allow prospectivity modelling based on ma-
chine learning techniques, using AI to help with exploration targeting 
(Xiong et al., 2018; Zuo et al., 2019; Liu et al., 2022 and references 
therein). There are a growing number of mineral exploration companies 
who now believe that by using such modern statistical techniques and 
mineral systems knowledge, it is possible to maximise the value of 
mineral assets and increase the probability of discovery of new mineral 
resources (Bonham-Carter et al., 1988; Partington et al., 2001; Part-
ington and Sale, 2004; Partington and Mustard, 2005; Archibald and 
Holden, 2009; Porwal and Kreuzer, 2010; Kreuzer et al., 2015; Liu et al., 
2022; Nykänen et al., 2023). The results from regional MPM can provide 
the confidence to invest in making tenement applications over the 
highly prospective areas that are freely available and the subsequent 
raising of capital to support follow-up exploration. MPM results can be 
used to plan diamond and resource drilling, allowing investment of 
capital in the highest priority prospect areas. The results from MPM also 
allow forgotten opportunities to be re-prioritised in a more objective 
way as the commodity market evolves, for example to increase discovery 
rates of critical minerals like copper, REEs, and lithium. MPM can also 
be used at the mine scale to better understand geological and financial 
risk to mining ore bodies (Nielsen et al., 2019). 

Despite the recent advances, uptake in the use of MPM by the mineral 
exploration industry in real world exploration, in particular to help 
make the decisions that lead to discovery and the development of new 
economic mineral deposits, remains limited. Interestingly, government 
geological surveys are more comfortable using MPM to aid their busi-
ness objectives, with examples including the Geological Survey of New 
South Wales (GSNSW) recently completing a project mapping the main 
mineral systems in NSW using MPM (e.g., Ford et al., 2019a), the 
Geological Survey of Finland GTK (e.g., Nykänen et al., 2017), and the 
British Columbia Geological Survey (e.g., Orovan et al., 2022). These 
geological surveys have not only used MPM to help market the pro-
spectivity of their jurisdictions to encourage investment in mineral 
exploration, but they also recognise the power of MPM to support 
resource and land management decisions. The complexity of the mineral 
exploration targeting process and the variety of needs of stakeholders 
who are interested in mapping mineral prospectivity, including industry 
and government, highlights the importance of the development of a 

decision support system that can be used in conjunction with MPM as 
presented by Yousefi et al. (2019, 2021). 

We started using MPM to aid exploration targeting, and subsequent 
exploration management of prospects mapped by MPM over twenty 
years ago. This has given us a perspective on how to use the large 
amounts of data now available at national and international scales, 
which MPM techniques to use, and how to apply mineral systems 
research to constrain and test the results of MPM. Our MPM workflows 
are well developed and consistent with other experts in the field (Ford 
et al., 2019b; Yousefi et al., 2019,2024; Nykänen et al., 2023). The 
processes involved in the MPM workflow and managing resulting 
exploration prospect areas, although largely database and GIS based, 
have been manual and time consuming to implement to date (Fig. 1). 

The MPM workflow is well understood and documented in the 
literature (Ford et al., 2019b; Yousefi et al., 2019, 2021; Nykänen et al., 
2023) and generally follows the steps below: 

1. Research and development of a mineral systems model for the min-
eral system in question including local variations in the mineral 
system.  

2. Compilation of data available that is relevant to the mineral system 
in question and processing of that data.  

3. Creation of predictive maps from the compiled data that represent 
proxies for the critical parameters of the mineral system, either using 
spatial analysis or expert knowledge to define thresholds between 
favourable and unfavourable areas.  

4. Data integration using the most appropriate modelling method (data- 
driven or knowledge-driven) based on the study area and data.  

5. Model validation and analysis of outputs.  
6. Prospect generation, attribution, and management. 

There is general agreement that Steps 1–5 are important for a suc-
cessful MPM project. However, Step 6 is often not the focus of academic 
studies or is left to the end user to work out what to do with the results. 
For mineral exploration, the goal of MPM is to create prospect areas 
from the outputs that represent areas of increased prospectivity based on 
the input data and knowledge. The processes for creating, attributing, 
and managing these prospect areas are an important part of the work-
flow that is often not described. We have developed a targeting system 
that can be applied at any scale from regional project generation to 
detailed drill targeting. However, the way we map and manage explo-
ration prospects remains mainly manual, particularly integration of 
economic data that allow the most efficient prioritisation of the prospect 
areas produced. Our current focus is now on researching and developing 
techniques that can automate these processes so that they can be 
included in the MPM software system (EIS) stressing the need for it to be 
seen as a management tool for mineral exploration. The aims of this 
paper are to describe the workflows and systems that we have developed 
over the last twenty years that when combined represent a semi- 
automated version of a type of EIS proposed by Yousefi et al., (Fig. 1; 
2019; 2021). We also present our ideas, which will be the focus for our 
research and development in the future, to better integrate and auto-
mate the various techniques, workflows, and technologies that we 
currently use to manage and prioritise our mineral exploration projects 
for follow up investment (e.g., Fig. 1). 

2. Lachan fold belt porphyry copper-gold mineral potential case 
study 

For this paper, we use data and results from studies of porphyry 
copper–gold mineralisation over the Macquarie Arc in Eastern Australia 
(Fig. 2) by the GSNSW (Ford et al., 2019) and the United States 
Geological Survey (USGS; Bookstrom et al., 2014) to illustrate the pro-
cesses needed in an EIS, with a focus on prospect area development and 
management. The data and reports from both studies are publicly 
available from the GSNSW (search.geoscience.nsw.gov.au/produc 
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t/9253) and the USGS (pubs.usgs.gov/publication/sir20105090L). The 
GSNSW study mapped the prospectivity for Ordovician-early Silurian 
porphyry copper-gold mineralisation, while the USGS study provides an 
endowment estimate for the same mineral system. The GSNSW study 
was chosen because the data and results are publicly available as 
pre-competitive data to support and advance mineral exploration in 
NSW, and research is continuing based on the results of the study (Ford 
et al., 2019a; Ford, 2020). The results from the mineral potential map-
ping are continuing to be used, for strategic land planning and decision 
making by the NSW government, as a technical resource for improved 
mineral system studies by the GSNSW, and for promoting mineral 
exploration in the Eastern Lachlan fold Belt through identification of key 
exploration criteria and the delineation of prospective ground. 

2.1. Mineral systems research and the development of a mineral systems 
model 

Mineral systems research, listing of key predictive variables, and the 
development of a spatial data table that lists all the predictive maps that 
can be developed as proxies of the mineral system are the important first 
steps of an EIS. An easy to access, organised, and standardised library of 
general mineral system descriptions needs to be available with local 
variations and lists of key predictive variables added as projects are 
completed over specific areas. Example spatial data tables for each 
mineral system should be included in the library so that knowledge from 
previous research can be utilised. In our system (Fig. 1), the mineral 
system descriptions and the spatial data table are stand-alone files, with 
descriptions manually updated as required for each project. However, 
the goal is to integrate the mineral descriptions and various mineral 
system spatial data tables into the EIS so that data entry and updates can 

be done automatically in the GIS environment during spatial analysis. 
The mineral system concept is now well established and is now 

widely used to help exploration targeting (Wyborn et al., 1994; Kreuzer 
et al., 2008; Hronsky and Groves, 2008; McCuaig et al., 2010). Applied 
to mineral exploration, the mineral systems approach requires identifi-
cation at various scales of the critical ore-forming processes and in-
gredients that can be mapped that characterise a particular mineral 
system. These diagnostic features can then be used as guides in area 
selection and exploration targeting. It is critical that all the factors 
involved in the processes being modelled are understood and replicated 
in the model for MPM techniques to be effective. This means the final 
map not only integrates all the digital data available but also the 
knowledge of the processes being modelled. 

The porphyry mineral system description used for the Macquarie Arc 
study is generally well understood and has been successfully applied 
worldwide (Sillitoe, 1972, 1973, 2008; Cooke et al., 2005; Singer et al., 
2008; Cox and Singer, 1986; Simpson et al., 2019; Forster and Blevin, 
2019). Porphyry copper–gold deposits are typically low-grade deposits 
containing up to billions of tonnes of ore, associated with structurally 
controlled vein networks which are spatially and genetically related to 
intermediate to felsic porphyritic intrusions of Phanerozoic age. The 
depth of emplacement is 1.5–4 km. Plutons at depth (up to 8 km) 
comprise the source of heat, metals, and mineralising fluids. 

The porphyry Cu–Au mineral system comprises the following 
geological processes: 

• Magma fractionation: e.g., crystallising pyroxene–biotite > amphi-
bole with hydrous melt fraction emplaced upwards (e.g., apophyses) 
prior to volatile saturation at 1.5–4 km. 

Fig. 1. Current EIS structure based on technology, software and workflows used to identify prospective areas.  
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Fig. 2. Geology map over the central portion of the Macquarie Arc study area.  
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• Pre-, syn- and late-intrusions are common as melts and are progres-
sively tapped from the main convecting magma. Precipitation of ore 
metals as magmatic sulphide phases can be caused by sulphide 
saturation or assimilation of carbon.  

• Fluids at near-magmatic temperatures pond beneath roof rocks 
causing hydrostatic failure (second boiling), and fluid up-flow and 
decompression, forming steeply-dipping sheeted and stockwork 
veins.  

• Cu is transported as an aqueous chloride complex (CuCl0), whereas 
bisulfide Au complexes predominate at < 350 ◦C and near neutral to 
weakly acidic conditions.  

• Hydrothermal precipitation mechanisms: Cu and Mo combination of 
depressurisation, cooling of aqueous (CuCl0) complexes and wall- 
rock reaction. Destabilisation of Au–Bi-sulphide complexes due to 
fO2 increase and pH changes including on contact with Fe-oxides 
and sulphides (e.g., skarn).  

• δ34S data are typically +4 to − 10‰ (though as low as − 19‰ at 
Northparkes) with depletion towards the core of the system, due to 
partitioning of 34S into the hydrothermal fluids under highly oxi-
dised conditions. 

The Macquarie Arc is the premier porphyry district in the Tasma-
nides of eastern Australia, hosting an endowment of over 15 Mt of Cu, 
about 70% of that in NSW, and more than 95% is hosted by porphyry 
deposits of any age. Porphyry and related skarn deposits of the Mac-
quarie Arc also host over 65 Moz Au, which is more than 50% of the Au 
endowment in NSW. A local mineral system description was developed 
for the Macquarie Arc using current research and data and ideas pro-
vided by the GSNSW (Crawford et al., 2007; Glen et al., 2007, 2011; 
Blevin, 2002; Forster et al., 2011; Fox et al., 2015). This was used to 
constrain the mapping of the geological processes, or proxies for those 
processes, that are present in the mineral system to create a series of 
predictive maps to be used to create the mineral potential models. The 
key features that characterise the Macquarie Arc porphyry system are 
listed below under the relevant mineral system component. 

Source  

• Calc-alkaline magmas of Ordovician to early Silurian age  
• Intrusions which are oxidised magnetite-series diorite to quartz 

monzonite–syenite and pegmatitic phases  
• Shoshonitic (high-K) subaqueous volcanics  
• Association with skarn and epithermal mineral occurrences  
• Large elliptical magnetic highs (100×100 m to 2 km) and smaller 

anomalies (up to 500 × 200 m) with an inner “donut” low indicative 
of porphyry signatures at depth. 

Transport  

• Regional structures  
• Cross-volcanic belt structures (NW or WNW trending). 

Trap  

• Graben structures  
• Dilational fault bends  
• Pipe-like, finger-like and dyke-like complexes emplaced near the 

base of K-rich volcanics  
• Veining and propylitization. 

Deposition  

• Known Ag–Au-base metal epithermal mineralisation  
• Mesothermal carbonate–Au–As–base-metal mineralisation  
• Au–Zn bearing phyllic–pyrite zones  
• High Au/Cu ratios in relatively restricted late phyllic and silicic (cap) 

alteration zones  

• Cu, Au, Ag, and Mo geochemical anomalies with peripheral Pb and 
Zn  

• Elevated Ti, V, P, F, Ba, Sr, Rb, Nb, Te, Pb, Zn, and PGE assays. 

This list was used to create a comprehensive spatial data table in MS 
Excel that was used to record information about all the predictive maps 
that were developed including their relevance to the mineral system, GIS 
methods used to create them, data required, and statistical correlations 
of the various maps to a set of known porphyry copper–gold deposits 
(Download the full results here: search.geoscience.nsw.gov.au/produc 
t/9253). 

2.2. Data compilation and processing 

Tools for data compilation and processing are an important part of 
any EIS. These should include tools for concatenating fault data and 
creating derivative point datasets for intersections, jogs, bends, and 
splays, checking topology of geology data, processing of geochemistry 
and geophysical data, and creating stream catchment maps from a DTM. 
Tools to aid in the selection of training points for data-driven modelling 
methods should also be included. These could include training point 
thinning tools as well as tools to select random subsets of training data to 
use for validation. 

The study area for the mineral potential model was masked to the 
Macquarie Arc, which includes the permissive host rocks for the Ordo-
vician–early Silurian porphyry Cu–Au mineral system. The extent of the 
Macquarie Arc was defined from both the seamless geology and a 
geophysical interpretation undercover provided by the GSNSW (Fig. 3). 

Data used to map the porphyry copper-gold mineral potential in the 
Macquarie Arc was provided by the GSNSW from their high-quality 
precompetitive datasets. Specific data were improved for the MPM 
project, including updated seamless basement geology, fault data 
attributed with ages, events, and fault order, geochemistry, geophysics, 
and mineral occurrence files with verified mineral system attributes. The 
data were analysed and reclassified in accordance with the mineral 
system features described above. Data processing included classifying 
and attributing rock units, creating derivative datasets from fault data, 
and statistical analysis of geochemical data relevant to the mineral 
system. 

The Macquarie Arc Porphyry copper–gold MPM model used in this 
paper required training data for spatial analysis of the data, to create 
predictive maps and for the MPM modelling. These training data were 
chosen from the GSNSW MetIndEx database in collaboration with 
GSNSW geologists. The 14 training points that were selected have suf-
ficient regional spread, are related to the same mineralisation event, and 
represent the range of deposit styles present in a porphyry copper–gold 
mineral system (Table 1; Figs. 2 and 3). 

Mineral occurrence, resource endowment and mine data are also key 
datasets that are required in an EIS to constrain exploration targeting 
and help prioritise and manage the resulting prospect areas. Endowment 
data from the USGS resource assessment study were integrated with the 
MPM training data to create an example of the type of resource 
endowment database that needs to be included in an EIS (Table 1). Any 
EIS will have to be able to deal with multiple commodities and deposits 
that contain different combinations of metal like the deposits that form 
in a porphyry mineral system. The known mines and resources in the 
Macquarie Arc study area contain varying quantities of copper, gold, 
molybdenum, and silver. So, to be able to use the deposits for economic 
and spatial analysis, their total metal endowment needs to be stand-
ardised and aggregated. The EIS can do this by linking the various metal 
endowments and calculating the metal value of the endowment for each 
metal, using current or chosen historic metal prices. The advantage of 
using this approach is that the metal values provide immediate infor-
mation on the potential economic opportunity of a deposit and allows 
the comparison of diverse deposit types and, if the metal price data are 
updated regularly, provides information on the commodities to be 
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Fig. 3. Porphyry copper–gold training points in the central portion of the Macquarie Arc study area (Ford et al., 2019. USGS study areas shown as a red outline for 
comparison (Bookstrom et al., 2014). 
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focussed on as economic conditions change. 
The total metal value and copper equivalent endowment in Tables 1 

and 2 were calculated by adding the recorded resource estimate data for 
copper, gold, molybdenum, and silver together using the metal prices at 
September 27, 2023 of A$12,572 per tonne of copper, A$2974 per ounce 
of gold, A$113,450 per tonne of molybdenum and A$$35.66 per ounce 
of silver to give a total endowment metal value that converts to a total 
copper metal equivalent tonnage value, using the formula Metal Ton-
nes*Metal Grade*Metal Price = Metal Value aggregated for all metals 
divided by the copper metal price (Tables 1 and 2). 

Some of the known porphyry copper-gold deposits listed in Table 1 
tend to be clustered, which enhances their economic potential to be 
developed into profitable mines. These deposits were grouped in our 
example, according to the 2-km rule of Singer et al. (2005), with their 
resources aggregated for grade-tonnage and spatial-density modelling 

within the EIS (Table 2). The Cadia group of deposits, including at least 
five individual porphyry copper-gold deposits and two skarn 
copper-gold deposits, when combined qualifies the Cadia group of de-
posits as a world-class giant resource of both copper and gold, according 
to the criteria of Singer (1995), and amounts to about 71% of the copper 
and 89% of the gold in identified resources of known porphyry 
copper-gold deposits in the Macquarie Arc (Bookstrom et al., 2014). The 
Northparkes group of deposits includes at least four porphyry 
copper-gold deposits. Temora central group of porphyry copper sites 
includes three known deposits and several prospects. Two other deposits 
in the Temora area are grouped with nearby porphyry copper prospects 
(c.f., Table 1, and Table 2). 

Table 1 
List of prospects and mine data used as training points for the porphyry copper–gold mineral potential model and USGS endowment study (Ford et al., 2019; Bookstrom 
et al., 2014). Note ES = USGS endowment study (Bookstrom et al., 2014), TP = training point from porphyry copper–gold mineral potential model, UG = underground 
mine, PPrb = post probability value at the data point from porphyry copper–gold mineral potential model, A$ = Australian dollars, and Cu Eq T = copper equivalent 
tonnes (see text above for method of calculation).  

Name Group Easting Northing Study Type Cu Eq T Metals A$M PPrb 

Cadia East Cadia 686,451 6,296,476 ES UG 14,470,741 $107,469 0.9599 
Cadia East Cadia 686,547 6,295,639 TP/ES Pit 1,110,000 $1432 0.8493 
Ridgeway Cadia 683,693 6,298,742 TP/ES UG 1,459,229 $11,772 0.763 
Cadia Hill Cadia 685,387 6,296,054 ES Pit 688,651 $889 0.8493 
Cadia Far East Cadia 687,250 6,295,655 ES Pit 302,400 $390 0.0223 
Big and Little Cadia Cadia 684,852 6,298,387 ES Pit 168,354 $217 0.3159 
E− 26 North Parkes 596,602 6,358,550 TP/ES Pit 988,377 $3738 0.0083 
E− 48 North Parkes 597,710 6,357,098 ES UG 497,224 $2352 0.0083 
E− 22 North Parkes 597,066 6,358,213 ES Pit 218,346 $1267 0.0083 
E− 27 North Parkes 598,004 6,358,425 ES Pit 182,184 $1148 0.0083 
E− 37 North Parkes 597,980 6,356,097 ES Pit 45,914 $71 0.0012 
E− 28 North Parkes 597,976 6,355,653 ES Pit 30,814 $68 0.0012 
E− 31N North Parkes 597,981 6,356,208 ES Pit 42,675 $279 0.0083 
Mandamah Temora 535,400 6,217,100 ES Resource 193,481 $1235 0.2972 
Culingerai Temora 536,295 6,214,378 ES Resource 50,411 $344 0.0927 
Estoril Temora 538,122 6,210,601 ES Resource 55,124 $418 0.0927 
Yiddah Temora 530,827 6,232,582 TP/ES Resource 296,796 $1073 0.0459 
Gidginbung Temora 542,195 6,201,625 TP/ES Pit 221,388 $1524 0.6422 
E42 Cowal 537,962 6,276,583 TP Pit/UG 999,584 $18,340 0.8525 
E39 Cowal 538,513 6,271,355 TP Prospect 728,313  0.2047 
Kaiser Boda 689,678 6,412,217 TP Resource 129,336 $6888 0.0005 
Boda Boda 690,504 6,411,092 TP Resource 54,000 $16,803 0.0001 
Glen Hollow Boda 687,303 6,417,299 TP Prospect 978,803  0.2121 
Marsden Marsden 550,299 6,266,872 TP/ES Resource 2,107,432 $4518 0.0813 
Copper Hill Copper Hill 674,502 6,341,285 TP/ES Resource 3,086,235 $4413 0.763 
Racecourse Racecourse 748,817 6,252,109 ES Resource 1,443,502 $221 0.0007 
Cargo Cargo 667,434 6,299,702 TP/ES Resource  $70 0.0248 
Peak Hill Peak Hill 611,504 6,379,010 TP Pit 191,547 $2226 0.2047 
Nasdaq/Kiola Nasdaq 659,792 6,217,812 TP Prospect   0.004  

Table 2 
List of mines and resource areas used in both studies, sorted by total metal value (Metals A$M), combined using the 2-km rule of Singer et al. (2005), with their 
resources aggregated for the purposes of grade-tonnage and spatial-density estimation in the EIS. See Table 1 for individual mine and resource data and for details on 
how the PPrb values and metal values were calculated. Type - if it is an operating mine or resource awaiting development. Metals A$M - the aggregated metal values 
based on the endowments reported by Bookstrom et al. (2014), Predicted MAMV A$M - the estimated metal value from the post probability Macquarie Arc MPM model 
using Macquarie Arc endowment data only, Predicted GbMV A$M - the estimated metal value from the post probability Macquarie Arc MPM model using the USGS 
global porphyry endowment data (Singer et al., 2008). Rank A$M - value after other economic cost factors are applied, which are used to rank the prospect areas to 
identify prospect targets.  

Name Type Study Easting Northing PPrb Metals A$M Predicted MAMV A$M Predicted GbMV A$M Rank Value A$M 

Cadia Mine USGS 686,451 6,296,476 0.9599 $228,811 $164,758 $298,527 $85,529 
Boda Resource MPM 687,303 6,417,299 0.2121 $2408 $8176 $27,425 $487 
Northparkes Mine USGS 596,602 6,358,550 0.0083 $38,802 $8176 $27,425 $2 
Cowal Mine MPM 537,962 6,276,583 0.8525 $1626 $569 $2242 $8186 
Marsden Resource USGS 550,299 6,266,872 0.0813 $18,149 $28,957 $145,995 $27 
Temora Mine USGS 543,144 6,201,375 0.6422 $25,214 $687 $4821 -$443 
Copper Hill Resource USGS 674,502 6,341,285 0.7630 $12,567 $3731 $19,476 $81,749 
Peak Hill Mine MPM 611,504 6,379,010 0.2047 $679 $2495 $13,630 $181 
Racecourse Resource USGS 748,817 6,252,109 0.0007 $10,274 $12,378 $44,123 $0 
Cargo Resource USGS 667,434 6,299,702 0.0248 $9157 $15,633 $76,828 $119  
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2.3. Creation of predictive maps 

Tools for transforming the raw data into features that can be used to 
test for association with the training data and create the final predictive 
maps will be an important component of an EIS. These should include 
multi buffer distance tools to test for proximity relationships, raster 
classification tools to test for categorical relationships or relationships 
with reclassified continuous data, and density tools to create density 
grids from point and line data. The tools to calculate the spatial statistics 
needed to determine the spatial correlation of the data to the training 
points for data driven modelling methods will be included in the 
modelling tools. 

The weights of evidence modelling technique was used in the 
GSNSW study to calculate spatial statistics, optimise the capacity of the 
various maps to predict the presence of porphyry copper–gold deposits 
and to create a mineral potential map for porphyry copper–gold min-
eralisation in the Macquarie Arc. Weights of evidence uses Bayesian 
statistics and allows the analysis and combination of various datasets to 
predict the location of the feature in question (Bonham-Carter et al., 
1989; Agterberg et al., 1993; Bonham-Carter, 1994). The technique is 
based on the presence or absence of a characteristic or pattern (e.g., 
distance to fault) and the occurrence of an event (e.g., mineral occur-
rence). The spatial analysis process allows for a non-biased assessment 
of a large number of predictive variables derived from available data in 
order to determine their relevance to the mineral system. The technique 
is well understood and is an accepted data driven MPM technique. The 
spatial analysis and weights of evidence modelling was carried out using 
the Arc-SDM extension for ArcGIS. 

The GSNSW study area for the porphyry Cu–Au model was converted 
into a 50 × 50m grid that represents the extent of the permissive geology 
and the grid cell distribution for all subsequent predictive map grids 
created for the model. The study area contains 9,239,756 cells for a total 
area of 23,100 km2. The cell size of the grids was chosen to represent the 
minimum scale that the data should be viewed. A unit cell of 1 km2 was 
used for the weights of evidence statistical calculations and represents 
the area assigned to each training point during the spatial analysis. 
Using the input parameters of the study area, unit cell, and number of 
training points, a prior probability was calculated (0.000606) that rep-
resents the chance of randomly finding a deposit within the study area 
before any additional evidence for mineralisation is applied. The aim of 
weights of evidence modelling is to add evidence in support of a hy-
pothesis to increase or decrease the prior probability of each grid cell in 
the study area. 

Before conducting the spatial analysis, GIS processing was carried 
out on the data. Polygon features such as geological units can be tested 
directly or a buffer may be applied to identify an area of influence (for 
example around an intrusion), or to account for shallow-dipping units. 
Point and line data were buffered before being tested. Alternatively, 
these data were gridded to determine the density of features or to show 
the interpolated distribution of elements for a geochemistry dataset. 
Continuous data, such as geophysics maps or density grids, were 
reclassified into a small number of classes to allow them to be tested for a 
correlation with the training data. 

Spatial statistics were calculated using the weights of evidence tools 
in Arc-SDM and used to create the predictive maps, i.e., determining 
buffer distance thresholds, and to understand how well the map in 
question can predict the training data. This process creates a weights 
table for each predictive map that contains the spatial correlation results 
and weights that are used to calculate the final model values. The 
weights tables contain important statistics that we add to our spatial 
data tables, which can be used to understand the results and make de-
cisions about the relevance of the predictive maps for mineral potential 
modelling (Bonham-Carter, 1994; Bonham-Carter et al., 1989). The 
spatial analysis resulted in the creation of 164 valid predictive maps for 
the porphyry copper–gold mineral system that have been tested for a 
spatial correlation with the corresponding training data. Forty eight 

percent of the valid maps correlated with the training data (C value ≥ 1). 
The full spatial correlation results for each predictive map are available 
for review (search.geoscience.nsw.gov.au/product/9253) and are an 
important exploration management resource for understanding the 
relevance of each dataset to porphyry copper–gold mineralisation in the 
Macquarie Arc. 

2.4. Modelling and validation 

Several methodologies are commonly used for mineral potential 
modelling including data-driven techniques such as the weights of evi-
dence method we have used in our example. An EIS should include a 
comprehensive suite of methods so that the modeller can decide on the 
best method (or combination of methods) that best suits their study area. 
This should include other data-driven methods (including AI) such as 
logistic regression (e.g., Carranza and Hale, 2001; Nykänen et al., 2008; 
Porwal and Kreuzer, 2010), neural networks (e.g., Singer and Kouda, 
1999; Porwal et al., 2003; Nykänen, 2008), random forests (e.g., Car-
ranza and Laborte, 2016; Ford et al., 2015; Ford, 2020; Roshanravan 
et al., 2023), and knowledge-driven methods such as fuzzy logic (e.g., 
Tangestani and Moore, 2003; Porwal et al., 2003; González-Álvarez 
et al., 2010; Yousefi and Carranza, 2015; Nykänen et al., 2023). Vali-
dation techniques should also be available including the area-frequency 
tool used in this study (Behnia et al., 2023) and the receiver operating 
characteristics (ROC) technique (Obuchowski, 2003; Fawcett, 2006; 
Nykänen et al., 2017, 2023). 

A mineral potential map was developed for the porphyry cop-
per–gold mineral system using a selection of predictive maps that 
represent all stages of the mineral system model described above. The 
model was created using the weights of evidence tools in Arc-SDM. 
Predictive maps were chosen that have the best regional coverage, a 
significant spatial association with the training data, and minimal 
duplication of predictive map patterns. The mineral potential map was 
primarily created for the purpose of identifying broad-scale strategic 
areas to conserve important resource lands for the government rather 
than delineating exploration targets for industry. Tighter constraints on 
the predictive maps used in each mineral potential model may be 
required to target company exploration activity. Several predictive map 
combinations were tested before the final set of maps were chosen to 
optimise the final result with respect to predicting the location of the 
training data. The output mineral potential map based on the maps 
listed in Table 3 is a grid of values that map the geological potential for 
the presence of porphyry copper–gold mineralisation for each grid cell. 
The output grid values range from 0 to 1 and map the post probability, 
which has either increased or decreased from the prior probability, 
depending on the combination of weighted predictive map variables 
(Fig. 4). 

The model was validated by calculating the efficiency of classifica-
tion using the Area–Frequency tool in ArcSDM. This is a measure of how 
well the training sites were predicted by the model. The efficiency of 
classification increases (approaches 100%) as more training points are 
predicted within a smaller prospective area. The porphyry copper–gold 
mineral potential model has an efficiency of classification of 96.0%. The 
area considered to be prospective (where the post probability is greater 
than the prior probability) covers an area of 3707 km2 compared to the 
study area of 23,100 km2, which has reduced the exploration search 
space to 15.18% of the total study area (Fig. 4). 

2.5. Analysis of the MPM post probability results 

The results of the modelling for porphyry Cu–Au mineral potential in 
the Macquarie Arc highlight that moderately to very strongly oxidised 
magmas that are also K-enriched have the best correlation with the 
training data. This is in-line with the current understanding of the por-
phyry Cu–Au mineral system in the eastern Lachlan Orogen. Addition-
ally, the regional-scale faults failed to show a very strong correlation 
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with the training points. However, fault bends, jogs, and splays are likely 
to be important to the localisation of fertile magmas in the study area. 

The most prospective areas for porphyry Cu–Au mineralisation 
within the Macquarie Arc are located around the Cadia and Cowal dis-
tricts (Fig. 4). The Cadia East, Copper Hill, Cowal, Endeavour 39, 
Gidginbung, and Ridgeway training points all lie in areas of high to very 
high potential; while Cargo, Combella, Peak Hill, Marsden, and Yiddah 
lie in areas of enhanced mineral potential (Fig. 4; Table 1). Northparkes 
and Nasdaq are located within the prospective area. Other highly pro-
spective areas are located around the Gidginbung and Copper Hill dis-
tricts, as well as near the Glendale deposit to the south of Cadia (Fig. 4) 
and the Milly Milly prospect to the south of Cowal. In addition, there are 
a number of areas away from the main mineralised trends that have 
moderate to high potential for hosting porphyry Cu–Au mineralisation, 
despite having no known occurrences of this type (Fig. 4). In particular, 
a north–south trending zone of relatively high prospectivity is located 
just to the west of the highly prospective area around the Glendale de-
posit. There are no known occurrences of any type located in this area. A 
northeast trending zone of moderate to high prospectivity is also high-
lighted approximately 2 km to the west-northwest of the Black Ridge 
Copper Mine. Another area of moderate prospectivity with no known 
mineral occurrences is located to the northwest of the Peak Hill deposit. 
These areas share the same key magma fertility characteristics as the 
highly endowed areas around the Cadia and Cowal districts (i.e., oxi-
dised, and high-K magma, shoshonitic volcanics), as well as having 
favourable structures for the transport and trapping of mineralised 
fluids. 

Although all the key magma fertility characteristics are present in the 
area, the Northparkes district was only highlighted as weakly prospec-
tive. A review of the remainder of the maps used for creating the por-
phyry Cu–Au mineral potential model highlights the lack of faults 
mapped in this poorly exposed part of the Macquarie Arc. Exploration 
for porphyry Cu–Au mineralisation in the Northparkes district has 
typically focussed on interpretation of high-resolution magnetic data, 
RAB drilling, and multi-element geochemistry. However, it is also 
possible that the faults may be mapped in company data that has not 
been incorporated into government datasets. As faults are the key 
dataset used to derive many of the transport and trap maps, the pro-
spectivity of the Northparkes district may be upgraded with incorpora-
tion of better resolution structural mapping. This is an example of one of 
the key outputs from MPM that uses spatial analysis to generate pre-
dictive maps: the results provide a list of the important data that 
correlate spatially with the known deposits and provide a guide to 
follow up data to be collected over less prospective areas if the data are 
missing. The Boda-Kaiser project currently being explored with success 
is a good example of how the mapping of important predictive features 
can upgrade the prospectivity of an area. The Kaiser deposit was used as 
one of the porphyry Cu–Au training points but is located in an unpros-
pective area in the model (although only 7 km south of a prospective 

region associated with the Glen Hollow prospect). This is due to the 
absence of mapped intrusions of the appropriate age (highly prospec-
tive), shoshonitic/high-K volcanics within the sequence (highly pro-
spective), and the lack of mapped structures. However, recent company 
mapping has identified relevant intrusions in the area and the GSNSW 
seamless geology can now be updated to include these. If the MPM was 
rerun when these data are integrated the prospectivity of the Boda- 
Kaiser project would be improved. This highlights the importance of 
being able to use automated feedback loops in any EIS to assess the ef-
fects of integrating new data on the prospectivity (e.g., Fig. 1). 

3. Mapping prospect areas 

Prospect areas are a key input into any EIS. These can be mapped in 
various ways, including subjective mapping of areas based on local 
knowledge, mapping areas around known occurrences of minerals 
including historic mines, mapping areas of anomalous geochemistry, 
mapping areas of anomalous geophysical properties, or by using the 
results of knowledge- or data-driven MPM techniques, including AI. Our 
preference is to use the least subjective method available based on data 
availability constraints and to use a method that integrates all available 
data and knowledge. Multiple MPM methods can also be used with the 
results integrated to produce prospects with increased certainty (Yousefi 
et al., 2024). The results of the post probability values from the MPM 
model developed for the Macquarie Arc porphyry Cu–Au study is used as 
an example of how we map prospect areas from MPM model results that 
can then be used in an EIS. 

Prospect areas can be mapped from a MPM model by reclassifying 
the resultant output map grid in a GIS into a classified grid, with pro-
spective areas split into classes above a certain threshold of geological 
potential measured by post probability values and non-prospective areas 
below this threshold. Statistical methods, which are similar to those used 
to map geochemical or geophysical grid anomalies, can be used to 
reclassify the post probability values above the prior probability with 
equal interval, quantile, natural breaks, geometric deviation, and stan-
dard deviation techniques all useful and generally provided by current 
GIS software like ArcGIS or QGIS. Cut-offs can also be defined by 
specifying a percentage area of the study that is to be focussed on, which 
allows the exploration search space to be reduced to match the intended 
exploration investment. 

The prior probability of any MPM model always defines the lower cut 
off threshold, as any grid cell with a value greater than the prior prob-
ability must have at least one required predictive geological feature 
present. In our example study the prior probability is 0.000606, so any 
grid post probability value greater than this is considered to be part of a 
potential prospect area. However, just using the prior probability often 
does not provide the best prospect area resolution, depending on how 
the output from the prospect area mapping is to be used. For example, 
the scale resolution required to identify areas for tenement acquisition is 

Table 3 
List of predictive maps used for the Porphyry copper–gold mineral potential model (The full spatial correlation results for all predictive maps created are available for 
review at (search.geoscience.nsw.gov.au/product/9253). #TP: number of training points, C: contrast value, StudC: studentised contrast value.  

Mineral 
System 

Spatial Variable Predictive Map Variable ID # 
TP 

C StudC 

Source Association with Ordovician–early Silurian intrusions 
(Benambran cycle) 

d2intall2 800 m 9 2.59 4.64 

Association with fertile magma (oxidised and K-rich) mf_redoxken Moderately to very strongly oxidised AND med- to 
ultra-high-K 

10 1.45 2.44 

Shoshonitic/high K subaqueous volcanics d2vhighk2 4600 m 10 2.48 4.19 
Transport Fault age (Benambran Contraction) d2fltbenc2 1400 m 8 2.01 3.71 
Trap Reactivity Contrast – All d2reactcon2 850 m 8 1.42 2.63 

Fault Bends-Jogs-Splays d2fltbjs2 1550 m 12 2.36 3.09 
Magnetics (high) rtphi2 Class ≥ 6 9 1.94 3.48 

Deposition Drillhole–Rock–MinOcc Cu–Au anomaly d2cuau Combined drill hole–rock Au ≥ 0.04 ppm and Cu ≥
1260 ppm 

14 3.88 3.72 

Au, Cu, Ag, Zn occurrence density (constrain by age) densaucuagzn2 Class ≥ 2 10 2.17 3.67  
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orders of magnitude different to the resolution required for drill hole 
planning. 

An intuitive and effective way of reclassifying the results from a 
MPM model to map prospect areas is to attribute the prior probability 
values from the model to mine and mineral occurrence data in the study 
area (e.g., Table 2). The probability cut offs can then be chosen based on 

the range of post probability values of the known producing mines 
compared to the endowment of the mines and prospects. This method 
was used to map the example prospect areas in this paper with the mine 
endowment compared to the post probability value from the MPM 
model listed in Tables 1 and 2. 

The detailed deposit metal value endowment data listed in Tables 1 

Fig. 4. Porphyry copper–gold mineral potential results in the central portion of the Macquarie Arc study area showing the cumulative number of training points (TP) 
and percentage of study area (A) captured by each class. 
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and 2 were plotted against the PPrb values from the Macquarie Arc MPM 
model to assess the relationship between endowment and geological 
potential measured by the model post probability values. The distribu-
tion of post probability values against reported metal endowment using 
the total metal values for the mines and resources define four distinct 
classes (Fig. 5; Tables 1 and 2). Those below the prior probability, which 
are considered to be non-prospective. A group of deposits that sit be-
tween the prior probability and a post probability value of 0.0081, with 
generally low endowment values. A group between post probability 
values of 0.0081 and 0.63, which have potentially significant economic 
endowment values and a group above post probability values of 0.63 
that have high post probability values and high economic endowment 
values. Interestingly, there is a gap between the two groups, which we 
interpret to suggest, like endowment estimates using Zipf’s Law, these 
may be the likely range of metal value endowments for potential new 
discoveries in the Macquarie Arc area (e.g., Fallon et al., 2010; Howarth 
et al., 1980; Rowlands and Sampey, 1977). The prospect areas were split 
into two classes based on the distributions of post probability values and 
metal values with a lower order class between 0.0081 and 0.63 post 
probability values and a high order class between 0.63 and 0.9599. 

This classification of the Macquarie Arc MPM model resulted in 566 
prospect areas in total, of which 69 are highly prospective (primary) 
prospect areas and 497 are prospective (secondary) prospect areas. Nine 
of the prospect areas include training points used in the Macquarie Arc 
MPM model and five training points are not covered by prospective 
areas. The Cadia East porphyry deposit is 1.5 km2 and the recently 
discovered Boda porphyry based on current drilling has an area of 0.4 
km2. It is therefore assumed in our example that a prospect area must be 
at least 0.4 km2 in area to provide the scale for an economic deposit to be 
present. This reduces the number of primary prospect areas to 16 and the 
secondary prospect areas to 141. 

The primary prospect areas have similar geological features that 
have been mapped at the Cadia, Temora and Cowal mines whereas the 
secondary prospect areas have similar geology to the Peak Hill and 
Northparkes mines. So, without taking economic or social licence to 
operate factors into account, the prospect areas can be prioritised into 
targets for exploration using the MPM model post probability values by 
ranking them using the order of the highest post probability values to the 
lowest. 

4. Applying economic factors to prospect areas in an EIS 

The main goal for any EIS is to help find new mineral deposits that 
are economic to mine and process at the financial conditions of the time. 
This applies to both exploration companies, who make the discoveries 
and develop them into profitable mining assets and governments at all 
levels, who need to manage and promote the efficient and socially 
responsible development of these mining assets. The discovery of prof-
itable mines can only be successfully done if economic parameters are 
considered at the targeting stage (e.g., Henley, 1997; Partington and 
Sale, 2004; Kreuzer et al., 2008; Hronsky and Groves, 2008; Partington, 
2010; Kreuzer et al., 2015). 

The mineral system concept assumes that for efficient deposition of 
metal in the Earths’ crust, all the required process have occurred 
(Wyborn et al., 1994; Kreuzer et al., 2008; Hronsky and Groves, 2008). 
This means from a MPM perspective that those areas where all the 
geological proxies for the mineral system process occur together are the 
prospect areas most likely to host larger and therefore economic deposits 
of metals (e.g., Partington, 2010; Yousefi and Carranza, 2017; Yousefi 
et al., 2019). The post probability values derived from any mineral po-
tential model provide a numeric measure of this required spatial over-
lap. This means that if the assumption that only the largest metal 

Fig. 5. Plot of aggregated copper equivalent tonnage endowment from Table 2 compared to post probability values with a statistical correlation test based on an 
exponential distribution. A Spearman’s Rank correlation gives a strong statistically valid positive correlation coefficient of 0.54 using the Fit on the graph. 
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deposits occur where the required geological process overlap is valid 
there should be a positive statistical correlation between the post 
probability values and metal endowment in the study area. It is therefore 
important before ranking prospect areas from a MPM model that this 
assumption is tested statistically by attributing the MPM post probability 
values to all relevant metal occurrence data, particularly the training 
data (e.g., Tables 1 and 2). This allows metal endowment to be plotted 
against post probability values and any statistical relationship can then 
be tested (Fig. 5). 

In the Macquarie Arc, the endowment metal data have a strongly 
skewed log normal distribution, which is typical of resource metal 
endowment distributions (e.g., Singer et al., 2008; Fallon et al., 2010; 
Howarth et al., 1980; Rowlands and Sampey, 1977). The post proba-
bility values from the MPM model have a similar strongly skewed log 
normal distribution that seems to compare with the endowment data 
distribution. A Spearman’s Rank correlation coefficient was calculated 
to test the correlation between the metal endowment and post proba-
bility values as neither distribution are normally distributed. The 
Spearman’s Rank correlation gave a strong statistically valid positive 
correlation coefficient of 0.54, confirming the observation from 
comparing the distributions that there is a positive statistical relation-
ship between total metal value and the MPM post probability values 
(Fig. 5). The positive correlation suggests that even though the metal 
endowments of the training data were not taken into account by the 
MPM technique, the resulting post probability values have the potential 
to be used to estimate potential metal endowment directly. This also 
provides confidence in economic analyses using the assumption that 
there is a higher probability of discovering deposits with larger metal 
endowments in regions where the highest number of geological map 
variables (Table 3). 

The positive correlation between the post probability values and 
recorded metal values allowed a statistical estimate of endowment to be 
made based on the average and maximum post probability value for the 
prospect area and the distribution of metal values for the local grade 
tonnage data listed in Tables 1 and 2, and also for the global grade 
tonnage data provided by Singer et al. (2008). Singer et al. (2008) 
confirmed statistically that the global porphyry copper-gold grade-ton-
nage model best represents the potential undiscovered porphyry 
copper-gold deposits of the Macquarie Arc. Our approach is similar to 
the second part of the three-part quantitative assessment technique used 
by the USGS but based on statistical relationships between the post 
probability data distribution and the grade tonnage data distribution 
rather than assigning the grade tonnage data to the prospect areas from 
the Macquarie Arc MPM subjectively (c.f., Singer 1993; Singer 2010; 
Singer and Menzie 2010). The advantage of using statistical distribu-
tions of the data is that it makes it possible to assign global grade 
tonnage data in a less subjective way than is currently used in resource 
endowment assessments (c.f., Bookstrom et al., 2014; Partington, 2010). 

Total metal values in A$ were calculated for the local and global 
grade tonnage data as listed in Tables 1 and 2 and the percentile metal 
values calculated as listed in Table 4. It was assumed that the post 
probability percentile value is equivalent to the metal value percentile 
for either grade tonnage data set (Table 4). This assumed relationship 
allows global mineral system grade tonnage data like that provided by 
Singer et al. (2008) to be used in localised study areas where grade 
tonnage data may be limited or not available. There is sufficient local 
grade tonnage data available in the Macquarie Arc MPM example to use 
these metal values in preference to the global dataset to estimate pros-
pect area metal values for use in our example EIS. 

A GIS linked database of exploration prospect areas was developed 
for the study area that is based on the reclassified area polygons from the 
Mcquarie Arc MPM (e.g., Fig. 1). This database also lists the geological 
predictive factors that are present and the geological potential from the 
post probability values for each prospect area. An important outcome of 
the prospectivity modelling is to determine what data are missing from 
lower ranked prospects, especially those that are freely available or 

previously undiscovered, which would improve their prospectivity. 
Typically, such prospects may have geophysical and structural data 
available from regional mapping and remote sensing studies, but may 
lack detailed drilling, structural analysis, or geochemical sampling. To 
complete a detailed analysis of each prospect or prospect cluster, a 
unique conditions grid is created in association with each prospectivity 
model. This grid is a response map containing the intersection of all the 
input variables as a single integer, effectively combining the predictive 
maps while maintaining a record of the spatial distribution of each 
variable. The unique conditions grid allows prospects to be easily 
identified and grouped according to the data missing that could be 
collected to upgrade (or downgrade) the prospect and prioritised 
accordingly. This is a critical part of the post-modelling analysis carried 
out using GIS that can provide important exploration management in-
sights but is often not used to its full potential. 

The economic parameters as metal values were also attributed to 
each prospect area based on the documented tonnes and grade ranges of 
the various metals in the operating mines in the study area by using the 
percentiles listed in Table 4. This now allows the various prospect areas 
to be ranked using the predicted metal value, which provides a better 
understanding of the economic potential of the prospect and is one of the 
most important factors when making a decision to invest in follow up 
exploration expenditure. 

5. Ranking prospect areas in a minerals exploration information 
and management system 

From an organisations corporate perspective, there are a range of 
other factors that need to be considered when ranking prospect areas 
that potentially affect the economic potential of the target, particularly 
prospect value and the costs required to develop and mine the prospect if 
a new deposit is found. Consequently, any EIS has to be able to not only 
include the potential value of any prospect area but also any costs that 
may be associated with developing that prospect area into an economic 
mine. The potential values and costs can then be mapped and compared 
in a consistent way to produce ranked prospects for future investment. 
There also needs to be the flexibility to include additional cost data or 
social licence to operate information based on an organisation or com-
pany’s operational or strategic requirements. Some of the additional 
data we use in our current system was added to the database of explo-
ration prospect areas from the Macquarie Arc MPM as an example of the 
types of information that are required, how the prospect areas can be 
linked to other external data sources and how these can be used to better 
inform the target area ranking system used in our EIS. 

Mine development and operating costs are fundamental costs that 
need to be included in an EIS to allow better ranking of prospect areas. 
Mine development costs include all the costs required to make the de-
cision to start a mining operation based on an estimated reserve of 
metals. These include resource and reserve estimation costs, which are 

Table 4 
Percentile ranges of the Macquarie Arc MPM post probability values compared 
to the same percentile ranges for the Macquarie Arc metal values from the 
recorded copper equivalent endowments (Bookstrom et al., 2014) and the global 
porphyry grade tonnage copper equivalent endowments (Singer et al., 2008).   

PPrb Range MA Metal Value Global Metal Value 

10 perc 0.0007–0.0054 $569 $2242 
20 perc 0.0054–0.0083 $687 $4822 
30 perc 0.0083–0.0228 $2186 $7893 
40 perc 0.0228–0.0813 $2495 $13,630 
50 perc 0.0813–0.1823 $3731 $19,476 
60 perc 0.1823–0.3084 $8176 $27,425 
70 perc 0.3084–0.7630 $12,378 $44,123 
80 perc 0.7630–0.8499 $15,632 $76,829 
90 perc 0.8499–0.9169 $28,956 $145,991 
95 perc 0.9169–0.9470 $124,676 $253,519 
96 perc 0.9470–0.9599 $164,751 $298,527  
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mainly drilling costs, process recovery costs, mainly related to metal-
lurgy, process engineering costs, feasibility study costs and capital in-
vestment costs to fund the building and commencement of the mining 
operation. These costs can be provided in an EIS based on current 
detailed company budgeted costs or can come from the various global 
resource cost databases and reports that are widely available (e.g., 
Robinson and Menzie, 2012). 

In the Macquarie Arc example, it is assumed that all prospect areas 
require standalone processing and mining from underground mines. A 
more sophisticated approach could attribute the type of mining required 
or map optimal trucking distances around processing facilities at oper-
ating mines in the area of interest and vary capital and operation costs 
accordingly. The average exploration cost is assumed to be A$105 per 
tonne of copper equivalent endowment to take a prospect area to a 
decision to mine. The exploration cost was applied to all prospect areas 
that had no reported endowment for the prospect area. This cost is based 
on reported global discovery rate costs for copper, but would be 
improved by using discovery costs that take account of national in-
vestment attractiveness (e.g., from the Fraser Institute Survey of Mining 
Companies www.fraserinstitute.org/), infrastructure (e.g., Wildman 
et al., 2015), access, and local costs of exploration. Mine operating costs 
were assumed from the All-in Sustaining Cost (AISC) that is reported on 
a quarterly basis by the companies that operate the Cadia and North-
parkes underground mines for this example, which currently is around A 
$4500 per tonne of copper equivalent endowment. Both are considered 
to be highly profitable and low-cost underground operations and are 
used in this example as a best-case scenario for the primary prospect 
areas. SP Global Market intelligence reported an average AISC for all 
copper production globally to be US$2.12 per pound (shorturl. 
at/yABY1), which converts to A$7850 per tonne copper equivalent 
using an A$ price taking account of inflation to 2023. Smaller mines tend 
to have higher costs due to smaller economies of scale. So, the A$7850 
per tonne copper equivalent was used for the secondary prospect areas, 
which are likely to have smaller endowments. A more comprehensive 
range of mine operation cost data from different mining scenarios need 
to be developed for inclusion in an EIS (e.g., Robinson and Menzie, 
2012). Developing a global database of reported AISC from differing 
mine scenarios over time would be invaluable and would allow the user 
to input statistically derived cost data or actual distributions to be used 
in Monte Carlo Simulations of potential costs for input in an EIS. 

Tenement and ownership data can be extracted from public gov-
ernment databases and integrated with the prospect maps, showing 
whether the area is already held for mineral extraction purposes, as well 
as who owns the land for access purposes. Prospect areas that are held by 
other parties therefore need to have an acquisition cost attributed to 
them. If the goal is to pick up new free ground, targets covered by ten-
ements can be excluded before the target analysis is undertaken. Or in 
this example, an acquisition cost of A$350 per tonne of copper tonnes 
equivalent is assumed based the average copper equivalent endowment 
price paid for recent copper projects from our Australian deals database. 
Any future development of an EIS will have to be able to input these 
types of costs for various commodities from potentially external data 
sources or databases. 

The prospect areas in this example have also been attributed with 
cadastral information on whether they lie within National Parks, 
populated areas and with the distance to nearest infrastructure (roads, 
rail, airstrip etc.). Consequently, the 11 prospect areas located within a 
National or State Park are considered to have no value. Alternatively, if 
mining is allowed in any environmentally sensitive area, it will incur 
additional development and operating costs, which will need to be taken 
account of in any financial analysis. 

Any future EIS should also consider using net present value (NPV) 
calculations for the potential mines in the prospect areas based on mine 
lives estimated from the potential copper equivalent endowment (e.g., 
Partington, 2010), along with more sophisticated economic analysis 
including Monte Carlo simulations. This will mean future EISs will need 

to be able to access differing internal and external databases of economic 
data relating to mineral exploration and mining that are available 
internally in organisations or through the internet. 

A total cost attribute was calculated for each prospect area by using 
the potential endowment from the prospect area metal values and 
adding all the costs together (e.g., Table 2). A final rank value was 
calculated by multiplying the prospect area potential metal value by the 
National Parks value to give those target areas with environmental is-
sues no value and subtracting the total costs from the prospect area 
metal values. This was then multiplied by the prospect area average post 
probability value to emphasise those prospect areas where the required 
predictive variables occur most consistently in the prospect area the 
highest. The target areas can then be sorted and mapped according to 
their rankings to allow visualisation and further analysis to support 
decision making by the management of the company or organisation to 
more efficiently target investment into mineral exploration and the 
discovery of new mines. 

The ranking of prospect areas in an EIS is one of the simplest and 
efficient ways of deriving insights into the understanding and potential 
for discovering new mineral deposits in a region. It immediately allows 
management to see where effort and investment should be focussed, 
which is critical for both government and industry. A summary of the 
ranking of the target areas for the resources and mine endowments listed 
in Table 2 is provided in Table 5 at various stages of the modelling and 
targeting workflow. The initial ranking based on the maximum post 
probability value in a prospect area is an effective way of ranking 
prospects for follow up work. The differences in ranking after the 
endowment values are added and the costs deducted generally improves 
the ranking of areas with known endowment but importantly provides 
insights into the economic potential if a discovery is made. It allows the 
user of the EIS to link geological potential measured by the MPM post 
probability values to economic potential. The prospect area analysis has 
reduced the number of prospect areas from 157 with a total area of 1157 
km2 to 152 prospect areas with a positive economic value with a total 
area of 993 km2. There are 37 of these prospective areas that have no 
record of historic or modern exploration in government databases that 
have a total area of 83 km2. One of these prospect areas is a primary 
target as classified from the MPM post probability values, which has a 
final rank of 6. None of these areas are covered by national or state parks 
and 15 of these prospect areas are partially covered by existing tene-
ments but none are freely available. 

Any future EIS needs to have the flexibility to be able to tailor the 
target ranking part of the system to the needs of the user. For example, 
the user may benefit from knowledge about historic exploration in the 
area of interest, which can be summarised by attributing the recorded 
historic mineral occurrences held in government databases to the 

Table 5 
Comparison of prospect area ranks for the main mines and resources at various 
stages of the target analysis in the Macquarie porphyry example. PPrb - ranks 
from MPM post probability values; PA - ranks of prospect areas greater than 0.4 
km2; MA MV - ranks based on Mcquarie Arc endowment statistics; GB MV - ranks 
based on global porphyry endowment statistics; Cost - ranks when costs are 
taken into account; Final - ranks when all factors are taken into account.  

Name PPrb 
Rank 

PA 
Rank 

MA MV 
Rank 

GB MV 
Rank 

Cost 
Rank 

Final 
Rank 

Cadia 1 1 1 1 9 1 
Northparkes 170 112 8 9 1 110 
Temora 13 10 3 4 5 11 
Marsden 77 65 6 7 3 67 
Copper Hill 3 3 1 1 9 2 
Racecourse NR NR NR NR NR NR 
Cargo 49 40 4 5 6 38 
Boda Glen 

Hollow 
45 37 4 5 6 18 

Cowal 4 4 2 2 7 4 
Peak Hill 52 43 4 5 6 33  
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prospect area. The number of drillholes, maximum drill depth, and 
maximum metal assays are also useful information that is not immedi-
ately available from the MPM results or used to develop the MPM. 

As discussed by Yousefi et al. (2019 and 2021) any EIS will have to 
incorporate interlinking GIS and database technologies (Fig. 1) and 
technicians to manage the system. The system will also have to be able to 
pass on the information, knowledge, and insights to executive and 
corporate level management where the skills to use and interpret GIS 
data and information are usually lacking. It is therefore critical that an 
EIS has a frontend dashboard type system to allow other users at various 
levels to access and use the outputs from the system in their 
decision-making. An example of such a frontend dashboard using the 
attributes for the prospect areas is available at (https://eis-viewer.kene 
x.com.au/) for the reader to sort and query the results from the Mac-
quarie Arc porphyry MPM example and ask their questions of the system 
to provide the insights they need. 

6. Conclusions 

As discussed by Yousefi et al. (2021) one of the important outcomes 
from an EIS are insights that are derived from the data and knowledge 
that are input into the system. The insights about the data, predictive 
maps and mineral system research for the Macquarie Arc porphyry 
copper and gold mineral system that we have gained from this work 
include:  

• Tools for transforming the raw data into features that can be used to 
test for spatial association with training data and create the final 
predictive maps will be an important component of an EIS. This 
means GIS with links to internal and external databases will be an 
important component in any system. It is possible to use GIS as the 
front-end of an EIS that is complimented with additional plug-in 
features to manage, analyse, and report the inputs and outputs 
from the system. Development and research into the optimal 
approach is an important first step in the development of any EIS.  

• Geological understanding based on mineral system research is a 
critical input to an EIS. This means any system must contain or have 
access to descriptions of the range of important mineral systems, 
summary lists of the key geological features of the mineral system, 
and detailed tabulations of the predictive maps that are required to 
be developed as proxies of those geological features. Being able to 
automate the use and input of results from spatial analysis done at 
this stage that constrains the making of the predictive maps is 
important and an area where future development needs to focus.  

• Training data are an important input into any EIS, which means the 
system either needs to contain endowment databases or grade 
tonnage databases for the most common mineral system deposits. Or 
the system must be able to link through the internet to the various 
databases available from national and state governments (e.g., 
Singer et al., 2008).  

• Given the user of the EIS may want to compare deposits with 
different commodity mixes and deposits of different commodities, 
the system must be standardised using a technique like metal 
equivalents. A standardised approach needs to be developed to do 
this or it can be based on metal prices as in our example. This means 
the EIS must include or have access through the internet to current 
and potentially historic metal price data.  

• Spatial analysis of the predictive maps leads to important insights 
into the data that is available and being used in the EIS and provides 
ideas on data that are missing and data that need to be collected to 
improve the outputs from the EIS either by government as pre-
competitive data or by Companies as follow-up exploration. Auto-
mated reporting of this type of analysis needs to be considered as an 
important future development for any EIS.  

• The EIS will have to include a comprehensive suite of MPM methods 
so that the user can decide on the best method (or combination of 

methods) that best suits their project. This should include other data- 
driven methods (including AI) such as logistic regression, neural 
networks, random forests, and knowledge-driven methods such as 
fuzzy logic. Validation techniques should also be available including 
the Area-frequency tool.  

• Research into using weighted training data based on endowment 
factors in data driven techniques will help better produce MPM 
outputs that can be used with endowment and economic data that 
are available. This potentially can lead to improving resource 
assessment studies by allowing them to be more objective and 
answer the “where” question as well as the “how much question”.  

• The spatial analysis and MPM results provide important geological 
insights into the understanding of the Macquarie Arc porphyry 
mineral system. Better data coverage and mapping of the granites, 
particularly key magma fertility attributes and a consistent fault data 
set at regional scales is important. The lack of these data explains the 
anomalously low post probability values for the Northparkes and 
Boda areas. Improving these datasets have the potential to most 
effectively update the prospectivity in the Macquarie Arc porphyry 
study area and could lead to new discoveries.  

• The main goal for any EIS is to provide the analysis that helps find 
new mineral deposits that are economic to mine and process at the 
financial conditions of the time.  

• A single database of prospect areas will be the main output to be 
managed from the MPM. This means the variety of tools that allow 
the reclassification of a MPM to map prospect areas will need to be 
available to the user in an EIS. Particularly tools that can use 
endowment or economic factors to help with the classification. 
Research into developing tools that can optimise this task is impor-
tant to improve the outputs from the system. 

• The Macquarie Arc porphyry MPM PPrb values have a positive cor-
relation with recorded endowment, which confirms the observation 
by Partington (2010). This is an important relationship for using 
MPM in an EIS as it allows endowment and economic data to be 
statistically attributed to prospect areas used in the system rather 
than subjectively (e.g., Bookstrom et al., 2014; Partington, 2010). 
More research into using more sophisticated techniques and ap-
proaches would be important, including integrating Monte Carlo 
Simulation into this stage of the workflow.  

• The EIS must be able to not only include the potential value of any 
prospect area but also any costs that may be associated with devel-
oping that prospect area into an economic mine. The potential values 
and costs can then be mapped and compared in a consistent way to 
produce ranked targets for future investment. Thought needs to be 
given when designing the system to including internal databases of 
cost information or including external links to these databases 
through the internet.  

• Research is needed on how to incorporate the various economic 
analytical techniques, like NPV calculations, into the EIS to optimise 
the ranking of the prospect areas in the system to produce target 
areas.  

• Any future EIS needs to have the flexibility to be able to tailor the 
prospect ranking part of the system to the needs of the user. For 
example, the user may benefit from knowledge about historic 
exploration in the area of interest, which can be summarised by 
attributing the recorded historic mineral occurrences held in gov-
ernment databases to the prospect area. The number of drillholes, 
maximum drill depth and maximum metal assays are also useful 
information that is not immediately available from the MPM results 
or used to develop the MPM.  

• Thought needs to be given into how the results from the EIS can be 
best viewed and used by nontechnical users of the system, particu-
larly at an executive management and corporate level.  

• The ultimate goal for the EIS of the future is for the system to rapidly 
apply automated feedback loops to the output of the system to assess 
the effects that collecting new data has on the prospectivity of the 
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target areas in the system or to understand the effects of changing 
economic conditions on the exploration targeting and investment 
decisions that are made both by government and industry. 

In conclusion our vision for the future EIS is that when new data or 
information on a mineral system become available it will be possible to 
input the new data or information into the system and for the attributes 
that can be used to create the insights that better inform an organisation 
to be updated in real time. It is clear from the advances now being made 
in machine learning systems that these will become important tools to 
help exploration and mining into the future. Current research has 
advanced the techniques needed and quality of data available is 
improving rapidly. The availability and quality of data remains critical 
as made clear by Ford et al. (2019b): no matter how good our MPM 
techniques are they must use quality data and maps to work successfully. 
More importantly for industry to start routinely using MPM, access to 
the type of systems described by Yousefi et al. (2019,2024), with the 
main algorithms and tools available in one software system, including 
decision support workflows is needed. The final piece of the jigsaw is 
availability of trained professionals to manage, maintain and run these 
systems, which needs to be considered as part of university degrees in 
geology, particularly those institutions that teach economic geology. 
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Nykänen, V., Törmänen, T., Niiranen, T., 2023. Cobalt prospectivity using a conceptual 
fuzzy logic overlay method enhanced with the mineral systems approach. Nat. 
Resour. Res. https://doi.org/10.1007/s11053-023-10255-8. 

Obuchowski, N.A., 2003. Receiver operating characteristic curves and their use in 
radiology. Radiology 229, 3–8. 

Okada, K., 2021. A historical overview of the past three decades of mineral exploration 
technology. Nat. Resour. Res. (Paris) 30, 2839–2860. 

Orovan, E., Ford, A., Peters, K., 2022. GIS-based mineral potential modeling as a strategic 
planning tool in British Columbia. AMEBC Roundup. Vancouver, 31 January – 3 
February 2022.  

Partington, G.A., Christie, A.B., Cox, S.C., 2001. Mineral resources assessment for the 
West Coast of New Zealand using spatial analysis in a GIS, A new exploration 
management and land-use management tool. In: Australasian Institute of Mining and 
Metallurgy Conference Volume, New Zealand Branch 34th Annual Conference, 
Dunedin, 141-16.  

Partington, G.A., Sale, M.J., 2004. Prospectivity mapping using GIS with publicly 
available earth science data - a new targeting tool being successfully used for 
exploration in New Zealand. In: Australasian Institute of Mining and Metallurgy, 
Pacrim 2004 Congress Volume, Adelaide, pp. 239–250. 

Partington, G.A., Mustard, R., 2005. Granite gold mineral systems in New Zealand. In: 
Australasian Institute of Mining and Metallurgy Conference Volume, New Zealand 
Branch Annual Conference, Auckland, pp. 160–167. 

Partington, G.A., 2010. Developing models using GIS to assess geological and economic 
risk: an example from mineral exploration in Oman for VMS copper gold 
mineralisation. Ore Geol. Rev. 38 (3), 197–207. 

Porwal, A., Carranza, E.J.M., Hale, M., 2003. Artificial neural networks for mineral 
potential mapping: a case study from Aravalli Province, Western India. Natural 
Recourses Research 12, 155–171. 

Porwal, A.K., Kreuzer, O.P., 2010. Introduction to the special issue: mineral prospectivity 
analysis and quantitative resource estimation. Ore Geol. Rev. 38, 121–127. 

Robinson Jr., G.R., Menzie, W.D., 2012. Economic Filters for Evaluating Porphyry 
Copper Deposit Resource Assessments Using Grade-Tonnage Deposit Models, with 
Examples from the U.S. Geological Survey Global Mineral Resource Assessment (Ver 
1.2, March 2014). U.S. Geological Survey Scientific Investigations Report 
2010–5090–H, p. 21. http://pubs.usgs.gov/sir/2010/5090/h/. 

Rowlands, N.J., Sampey, D., 1977. Zipf’s law—an aid to resource inventory prediction in 
partially explored areas. Math. Geol. 9 (4), 383–391. 

Roshanravan, B., Kreuzer, O.P., Buckingham, A., Keykhay-Hosseinpoor, M., Keys, E., 
2023. Mineral potential modelling of orogenic gold systems in the granites-tanami 
Orogen, Northern Territory, Australia: a multi-technique approach. Ore Geol. Rev. 
152, 105224 https://doi.org/10.1016/j.oregeorev.2022.105224. ISSN 0169-1368.  

Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. 
Econ. Geol. 67, 184–197. 

Sillitoe, R.H., 1973. The tops and bottoms of porphyry copper deposits. Econ. Geol. 68, 
799–815. 

Sillitoe, R.H., 2008. Major gold deposits and belts in the North and South American 
Cordillera: distribution, tectonomagmatic settings, and metallogenic considerations. 
Econ. Geol. 103, 663–687. 

Simpson, B.P., Downes, P.M., Blevin, P.L., Forster, D.B., 2019. A Mineral System Model 
for Mid Silurian to Carboniferous Intrusion-Related Skarns in the Eastern Lachlan 
Orogen, New South Wales. Geological Survey of New South Wales report, GS2019/ 
XXXX. 

Singer, D.A., Berger, V.I., Moring, B.C., 2008. Porphyry Copper Deposits of the 
World—Database and Grade and Tonnage Models, 2008. U.S. Geological Survey 
Open-File Report 2008–1155, p. 45 available at: http://pubs.usgs.gov/of/2 
008/1155/. 

Singer, D.A., Berger, V.I., Menzie, W.D., Berger, B.B., 2005. Porphyry copper density. 
Econ. Geol. 100, 491–514. 

Singer, D.A., 1993. Basic concepts in three-part quantitative assessments of undiscovered 
mineral resources. Nonrenewable Resour. 2, 69–81. 

Singer, D.A., 2010. Progress in integrated quantitative mineral resource assessments. Ore 
Geol. Rev. 38, 242–250. 

Singer, D.A., Menzie, W.D., 2010. Quantitative Mineral Resource Assessments—An 
Integrated Approach. Oxford University Press, New York.  

Singer, D.A., Kouda, R., 1999. Examining risk in mineral exploration. Nat. Resour. Res. 8, 
111–122. https://doi.org/10.1023/A:1021838618750. 

Tangestani, M.H., Moore, F., 2003. Mapping porphyry copper potential with a fuzzy 
model, Northern Shahr-e-Babak, Iran. Aust. J. Earth Sci. 50, 311–317. 

Wildman, C., Puccioni, E., Stokes, M.A., Schodde, R., 2015. Enhancing regional and 
national economic development from mineral projects: the use of spatial analysis to 
inform on infrastructure deficit in Canada. In: AusIMM NZ Branch Conference, 
Dunedin, 31 August - 2 September 2015. 

Wyborn, L.A.I., Heinrich, C.A., Jaques, A.L., 1994. Australian proterozoic mineral 
systems: essential ingredients and mappable criteria. In: The AusIMM Annual 
Conference 1994, pp. 109–115. 

Xiong, Y., Zuo, R., Carranza, E.J.M., 2018. Mapping mineral prospectivity through big 
data analytics and a deep learning algorithm. Ore Geol. Rev. 102, 811–817. 

Yousefi, M., Carranza, E.J.M., 2015. Fuzzification of continuous-value spatial evidence 
for mineral prospectivity mapping. Comput. Geosci. 74, 97–109. 

Yousefi, M., Carranza, E.J.M., 2017. Union score and fuzzy logic mineral prospectivity 
mapping using discretized and continuous spatial evidence values. J. Afr. Earth Sci. 
128, 47–60. 

Yousefi, M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M., 2019. Exploration information 
systems–A proposal for the future use of GIS in mineral exploration targeting. Ore 
Geol. Rev. 111, 103005. 

Yousefi, M., Carranza, E.J.M., Kreuzer, O.P., Nykänen, V., Hronsky, J.M., Mihalasky, M. 
J., 2021. Data analysis methods for prospectivity modelling as applied to mineral 
exploration targeting: state-of-the-art and outlook. J. Geochem. Explor. 229, 
106839. 

Yousefi, M., Lindsay, M.D., Kreuzer, O.P., 2024. Mitigating uncertainties in mineral 
exploration targeting: majority voting and confidence index approaches in the 
context of an exploration information system (EIS). Ore Geol. Rev. 165, 105930. 

Zuo, R., Xiong, Y., Wang, J., Carranza, E.J.M., 2019. Deep learning and its application in 
geochemical mapping. Earth Sci. Rev. 192, 1–14. 

G.A. Partington et al.                                                                                                                                                                                                                          

http://refhub.elsevier.com/S0883-2927(24)00115-X/sref33
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref33
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref33
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref33
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref33
https://doi.org/10.1007/s11053-022-10075-2
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref35
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref35
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref35
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref36
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref36
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref36
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref37
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref37
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref37
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref38
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref38
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref38
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref39
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref39
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref39
https://doi.org/10.1007/s11053-023-10255-8
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref42
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref42
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref43
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref43
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref44
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref44
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref44
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref45
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref45
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref45
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref45
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref45
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref46
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref46
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref46
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref46
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref47
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref47
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref47
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref48
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref48
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref48
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref49
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref49
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref49
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref50
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref50
http://pubs.usgs.gov/sir/2010/5090/h/
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref52
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref52
https://doi.org/10.1016/j.oregeorev.2022.105224
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref54
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref54
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref55
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref55
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref56
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref56
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref56
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref57
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref57
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref57
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref57
http://pubs.usgs.gov/of/2008/1155/
http://pubs.usgs.gov/of/2008/1155/
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref59
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref59
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref60
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref60
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref61
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref61
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref62
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref62
https://doi.org/10.1023/A:1021838618750
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref64
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref64
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref65
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref65
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref65
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref65
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref66
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref66
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref66
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref67
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref67
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref68
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref68
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref69
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref69
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref69
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref70
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref70
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref70
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref71
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref71
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref71
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref71
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref72
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref72
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref72
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref73
http://refhub.elsevier.com/S0883-2927(24)00115-X/sref73

	Ranking mineral exploration targets in support of commercial decision making: A key component for inclusion in an explorati ...
	1 Introduction
	2 Lachan fold belt porphyry copper-gold mineral potential case study
	2.1 Mineral systems research and the development of a mineral systems model
	2.2 Data compilation and processing
	2.3 Creation of predictive maps
	2.4 Modelling and validation
	2.5 Analysis of the MPM post probability results

	3 Mapping prospect areas
	4 Applying economic factors to prospect areas in an EIS
	5 Ranking prospect areas in a minerals exploration information and management system
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


