Australian Granite Database: potential for future geoscience projects in a green world

by Elham Yousef Zadeh¹ and Katie Peters¹

¹Kenex Pty Ltd, Wellington, New Zealand

Introduction

Intrusive igneous rocks with more than 55% silica content are classified as felsic to intermediate. Common felsic and intermediate intrusive rocks are granite, pegmatite, granodiorite, and diorite. These rocks can be associated with many types of mineralisation and contain or are proximal to commodities that are used in modern technologies and industries such as copper, lithium, REE, and tin.

Geographic Information Systems (GIS) are an awesome technology for compiling, analysing, and presenting spatial data increasing usability of the data and saving time. GIS increases efficiency in all areas of geoscience including exploration and mining, assessing environmental impact, and geology mapping. And databases! They are important tools for integrity, safety, and standardisation of various data.

We have used the power of GIS to create a spatial granite database that maps all felsic and intermediate intrusive rocks over Australia and attributes them with important information for mineral exploration and other geoscience applications.

Discussion

Easy access to large amounts of data in one place is one of the most significant advantages of designing and using a database. Unfortunately, having easy access to good quality data over a large area is not always possible and geodata are no exception. Geo-databases nowadays are gradually improving and are widely used by governments, industries, and academic centres. By using available databases many companies, active in mining, oil exploration, engineering geology and environmental sectors have been able to gain a better understanding of their projects and therefore make more informed decisions.

Kenex have identified a need for a spatial database of felsic and intermediate intrusive rocks for Australia (Figure 1). The database will be critical for targeting granite related mineral systems including tin, REE and lithium. Currently the available granite mapping is variable between states and is not well attributed with information relevant to identifying these mineral systems. The create this database we have combined data from geology mapping undertaken by each state into a single country wide dataset (Figure 2). The database is attributed with information from the original survey mapping, the Australian Stratigraphic Database, and other spatial and non-spatial sources including relevant geochemistry and mineral occurrence information.

Unitname	Lith_desc	Lith_desc2	Complex	Lith_group	Supersuite	Suite	Geo_prov	Form_event	Geoage	Ga_min	Ga_N	Ga_max	Ga_m	Age_meth	Grantype	
Nagha Granite	Red, felsic, equigranular	, Previously known as l		Igneous felsic i	i	Gabo Suite	Lachlan Oro		Devonian	358.9		419.2		Inferred	A-Ty	
Howe Range G	Medium- to fine-graine	¢		Igneous felsic i	i	Gabo Suite	Lachlan Orc		Devonian	358.9		419.2		Inferred	A-Ty	
Nagha Granite	Red, felsic, equigranular	, Previously known as I		Igneous felsic i		Gabo Suite	Lachlan Orc		Devonian	358.9		419.2		Inferred	A-Ty	
Howe Range G	Medium- to fine-graine	(Desuisustu kossus as l		Igneous felsic i		Gabo Suite	Lachlan Oro		Devonian	358.9		419.2		Inferred	A-Ty	
Xmas Quartz M	Coarse-grained quartz-	Previously known as		Igneous interm	n Moruva Sune	Xmas Suite	Lachlan Oro		Late Silurian-	303.9		419.2		Inferred	U	
Nagha Granite	Red, felsic, equigranular	Previously known as I		Igneous felsic i	i	Gabo Suite	Lachlan Oro		Devonian	358.9		419.2		Inferred	A-Ty	
Stringy Road Gr Medium- to coarse-grai		i		Igneous interm	n Moruya Supe	Xmas Suite	Lachlan Orc		Late Silurian-	393.3		423		Inferred	U	
Croajingalong	Coarse porphyritic grap	Previously known as		Igneous felsic i	i Kameruka Su	Wallagaraugh	Lachlan Oro		Early Devonia	r 393.3		419.2		Inferred	I-Ty	
Maramingo Gra	Pink granite.	Previously known as		Igneous felsic i	i		Mallacoota		Early Devonia	r 393.3		419.2		Inferred	U	
Waalima Grano	Medium- to coarse-grai	Previously known as	1.2	Igneous felsic i			Lachlan Oro		Late Silurian-	393.3		427.4		Inferred	U	
GranTinHardRock GranBisHardRock		Char(2)	36 us felsi	6 Jus felsic	i Kameruka Su	Wallagaraugh	Lachlan Orc	0	Early Devonia	393.3		419.2		Inferred	I-Ty	
		Char(2)	3	7												
GranMolyHardRock		Char(2)	3	8												
GranTungHardRock		Char(2)	3	9 Th	e proje	ct has ir	ncludeo	d differ	ent stag	ges.						
Sio2_min		Float	4	0												
Sio2_max		Float	4	1 1-	Data	a comr	oilation	n: gatł	nering	exist	tino	r dat	ta	of fel	lsic an	
Sio2_mean		Float	4	2 int	ormodi	to intri	nivo r	n guu	wiowin	CA15	mn	oring	on	d aditi	ing data	
K2o_min		Float	4	3	cilleur			JCKS, 10	· ·	g, co	mр	aring	, ai			
K2o max		Float	4	4 2-	Spat	ial data	: select	ing fea	tures, 11	itegr	atin	ig dat	ase	ts, and	cleanin	
K2o_mean		Float	4	5 po	polygons.											
 Na2o_min		Float	4	6 3-	3- Database creation: designing database, formatting granite data, and adding attributes.											
Na2o_max		Float	4	7 an												
Na2o_mean Rb_min Rb_max Rb_mean Sr_min Sr_max Sr_mean Au min		Float	4	8 4-	4- Data verification: QA/QC data, final edits, and populating database.											
		Float	4	9 da												
		Float	5													
		Float	5	1 10	The fast stage is using the granite database for 2D and 3D modeling										lodellin	
		Float	5	2 an	d explo	ration ta	argetin	g.								
		Float	5	3 Co	nelusi	n										
		Float	5	4	The development of the Australian Granite Database is an example of											
		Float	5	5 Th												
Au max		Float	5	6 ho	how we can improve geospatial data on a large scale to aid pro									d proje		
Au_mean Bi min		Float	5	7	generation for critical mineral deposits needed for green technologies											
		Float	5	gei											nologie	
Bi max		Float	5	9 1	Iditiona		basa	1 datab	0000 010	on i	mn	orton	t to	ol to a	dd yoly	
Bi mean		Float	6		and improve decision making and management of projects in all areas of geoscience.										uu valu	
Mo_min Mo_max		Float	6	an												
		Float	6	- of												
Mo mean		Float	6	3												
Sn min		Float	C	4												
Sn_mov		Floot	0	5												
Sn_max		Fioat	0	5												
5n_mean		Float	6	0												
W_min		Float	6	/Eic	Figure 2: Two views of the verious data fields present							nt i	n tha	Austrolic		
W_max		Float	6	Figure 2: I wo views of the various data fields present in the At									nusuralla			

W_mean

Float

69

Figure2: Two views of the various data fields present in the Australian Granite Database.