A national-scale GIS and prospectivity models of mesothermal gold mineralisation in New Zealand

GA Partington¹ and R Smillie²

¹ Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt , New Zealand. ² Crown Minerals, Ministry of Economic Development, PO Box 1473, Wellington, New Zealand.

Scope and aims of the prospectivity modelling

Many national and state governments lack the ability to readily determine the mineral wealth or potential of their territories. Traditional mineral assessments are difficult and time-consuming to undertake, as geological data is widespread and in a variety of formats. In addition, the assessments are in a text format that has limited application, lacking digital output. Furthermore, accurate mineral assessment is usually difficult, as government agencies tend to hold large unknown and uncompiled amounts of data relating to the mineral wealth of a country, collected by mineral exploration companies over many years. This information has great value for any mineral explorer wishing to invest in that country, serving as a guide as to where undiscovered mineral deposits may be located. At the present time, however, this information is not easily accessible in New Zealand. Thus, there is less incentive for explorers to undertake exploration activity, as the costs involved in acquiring geological information for regional targeting are high. The adoption of Geographic Information System software (GIS) for the management of mineral permitting and the Crown Mineral Estate offers a new and exciting platform for storing and analysing geological data, especially as GIS is now a common exploration tool used by the mining industry.

The scope of the GIS based minerals initiative, of which this CD is the first output, was to develop a product that could be used to highlight the mineral potential of New Zealand at a regional scale to the international exploration market. Like Australia and Canada, New Zealand has experienced a significant downturn in exploration. As a consequence, many areas considered prospective during the exploration boom in the 1980s are now open to exploration. The aim of this project was to highlight those areas to explorers who may have discounted New Zealand as an exploration destination in the past, or are new to New Zealand.

More importantly, the project delivers a new regional scale digital dataset, including geology, structure, geochemistry, current tenement information, land use, national parks and historical prospect information that explorers will be able to use to assess and target gold mineralisation in New Zealand.

The most important aim of this project was to try and reduce risk for explorers entering New Zealand at the important first step by combining one hundred years worth of data and information, held by Crown Minerals and GNS with current knowledge from research by GNS. This is intended to speed up the exploration process and allow a more focussed exploration effort. The prospectivity models, with their data coverage limitations, are not intended to find ore bodies for companies, but rather encourage companies to use their own knowledge to take advantage of the new data provided by this study. The study uses significant new geological knowledge from recent research carried out by GNS, which is summarised in a report by Christie (2002) contained on this CD.

This report is not intended as a scientific publication, but rather to document and explain the geological variables present in the GIS on the CD, how to use them and provide comments on the significance of the results of the prospectivity modelling to future exploration in New Zealand. The mesothermal gold GIS on the accompanying CD can be used by novice and expert GIS users alike. Inexperienced GIS users can browse the different geological data sets on the CD in relation to topographic and land tenure information. Expert GIS users can upload the GIS onto their own systems directly if using ESRI GIS software or convert the data files into their preferred GIS format. All data files attached to the GIS vector and grid files can also be accessed using common database, spreadsheet and word processing software. The Arc-SDM software used for the prospectivity

modelling and derivative grid files are also provided for those users who intend to carry out their own prospectivity analyses.

All exploration models contain a certain amount of inherent bias due to the translation of any genetic model for mineralisation into an exploration model. Not all of the elements that form a genetic mineralisation model can be included in an exploration model as some data are not easy to collect, other data are expensive to collect and some data are used or discarded due to personal choice. The prospectivity models for Paleozoic and Mesozoic mineralisation in this analysis are no different, and users are encouraged to carry out their own analysis using the data provided in this GIS.

As discussed in more detail below, this project is the first part of a larger initiative to convert all exploration data held both by GNS and Crown Minerals into a digital format. Consequently, the study focussed on data collected at a scale of 1:20,000 and smaller. This means that data coverage should be taken in to account when assessing mineral potential. It is intended that the GIS and prospectivity models only be used as a positive exploration tool for near surface mineralisation. Prospect scale exploration targeting can be carried out if the more detailed exploration data, for example drilling information, soil sampling and trenching information, held by Crown Minerals are converted into digital data and incorporated into this GIS at a later date. Additional data from drilling information, seismic data and geophysical data is required before an assessment of the potential for deeper mineralisation can be made.

It is also hoped that the prospectivity modelling will also give all levels of government in New Zealand the on-going capacity to better manage and utilise the New Zealand Mineral estate. This will hopefully lead to better-informed decisions regarding land and mineral resource use at the national and local government level.

Data

The data themes on this CD have been derived from five databases maintained by the Institute of Geological and Nuclear Sciences Ltd:

- GERM (Geological Resource Map of New Zealand) is a mineral occurrence database featuring information on location, mining history, geological setting, and commodities.
- GMNZ is the digital version of the 1972 1:1,000,000 Geological Map of New Zealand published by the New Zealand Geological Survey. Only GIS-related modifications have been made, including rectification to a modern topographic base.
- GSNZ/GNS refers to a joint geochronological database project between the Geological Society of New Zealand and the Institute of Geological and Nuclear Sciences Ltd.
- QMAP is the comprehensively revised edition of the 1:250,000 Geological Map of New Zealand. QMAP is a fully digital, information-rich ArcInfo GIS dataset that currently covers half of the country and is planned to be complete by 2010.
- Petlab (incorporating Regchem) are recently compiled geochemical databases covering all of New Zealand. The databases are managed by GNS with data compiled from a variety of sources including GNS databases, university databases and from Open File Exploration reports held by Crown Minerals.

There are more than one hundred new data themes provided on this CD (Appendix 1). However, New Zealand still lacks good regional coverage of some digital data that are taken for granted in other countries, states and territories. Additional datasets that either need to be acquired or converted from paper form into digital form include:

- High resolution gravity
- High resolution EM
- High resolution DTMs
- High resolution radiometric data
- High resolution magnetic data
- Prospect-scale soil sample geochemistry
- Prospect scale drill geochemistry from all drilling methods (RAB, RC and Diamond)

Model definition

Defining the deposit model is the foundation phase for any prospectivity study. Accepted genetic models for mesothermal gold mineralisation in New Zealand were documented (Christie 2002), and are provided on the CD as a separate PDF report. These models were used to constrain the data collected and complied from Crown Minerals exploration reports and GNS digital databases.

New Zealand mesothermal gold deposits can be subdivided into two main types based on their age and host rock association (Table 1 and Figure 1). One class of deposits occur in greywacke rocks of Paleozoic age in western South Island (e.g. Reefton deposits, including Globe-Progress >2 M oz), whereas the second class occur in Mesozoic age schist of Marlborough and Otago (e.g. Macraes Flat >5 M oz Au), and in schist and greywacke of the Southern Alps. Christie (2002) provides a more in depth discussion of the main characteristics of mesothermal gold deposits in New Zealand.

The specific geological and geochemical data that was compiled for use in the subsequent GIS prospectivity analysis are summarised in Table 2.

Figure 1: Major mesothermal gold deposits in New Zealand.

	Paleozoic deposits	Mesozoic deposits
Geographic occurrence	West Coast, Nelson and Fiordland	Marlborough, Southern
Mineralisation style	Quartz lode and	Quartz lode and
	disseminated Au in shear	disseminated Au in shear
	zones	zones
Operating mines	Globe-Progress in	Macraes Flat
1 0	development	
Maximum known resource in	>2 M oz Au	>5 M oz Au
one deposit		
Lode dimensions L x D x W	1070 m x 1000 m x 14 m	1800 m x 150 m x 21 m
Host rock	Greywacke	Schist
Age of host rocks	Cambrian-Ordovician	Permian-Triassic
Age of metamorphism	Silurian-Devonian	Jurassic to Cretaceous
Age of mineralisation	Silurian-Devonian	Early Cretaceous
Geologic terranes	Buller	Caples, Torlesse
Metamorphism	Lower greenschist facies,	Greenschist facies,
	weakly cleaved	strongly foliated
Structural controls	Faults, shears and folds.	Faults and shears. Lodes
	Lodes parallel strike of fold	parallel axis of schist belt
	axes. Density of quartz	
	veining	
Hydrothermal alteration	Sericite, carbonate,	Sericite, arsenopyrite and
	arsenopyrite and pyrite	pyrite. (Graphite at
		Macraes)
Lithological controls	Sandstone/mudstone, and	Psammitic/pelitic/interlayer
	bedding	ed schist, and bedding
Potential source influences	Nearby granites	Greenschists and
		metacherts
Main metallic minerals	Gold, arsenopyrite, pyrite	Gold, arsenopyrite, pyrite
Minor metallic minerals	Local stibnite	Local stibnite and
		scheelite
Main non-metallic minerals	Quartz and carbonate	Quartz and carbonate
Minor non-metallic minerals	Feldspar and chlorite	Graphite at Macraes
Geochemical signature	Au, As, ±Sb	Au, As, ±Sb, ±W

 Table 1: Characteristic features of New Zealand Paleozoic and Mesozoic mesothermal gold deposits.

Relationship	Feature	Data source
Distribution of known deposits	Occurrences and past production	GERM
Terranes and lithologic associations	Host rock lithology	QMAP
	Terranes	QMAP
Potential source rock influences	Granites and greenschists	QMAP
Metamorphic controls	Metamorphic grade	QMAP, Petlab
	Textural grade	QMAP
	Relative structural depth	QMAP and data of Mortimer (2001)
Structural controls	Relationship to faults	QMAP
	Relationship to folds	QMAP
	Relationship to major regional discontinuities	QMAP and data of Mortimer (2000, 2001) and Mackenzie & Craw (2001)
Regional geochemistry	Stream sediments	Regchem
	XRF whole-rock	Petlab
	Rock chip	Regchem - to be compiled from mining company reports
	Soil	Regchem - to be compiled from mining company reports
Deposit geochemistry	Rock chip	Regchem - to be compiled from mining company reports
	Soil	Regchem - to be compiled from mining company reports

Table 2: Summary of data reviewed.

Data collection and compilation

The accompanying CD contains more than 100 new vector and grid GIS data themes that have not been readily accessible for exploration targeting. More importantly, the data are complied at a national-scale, and some themes, especially the geochemical data themes, have not been viewed in this format or scale before. A significant amount of geological data and information was sourced from open file technical reports held by Crown Minerals, and from various databases held by GNS, such as Regchem (regional stream sediment/soil geochemistry, GERM (mine, prospect, and mineral occurrence database), and Petlab (geochemical rock sample database). GNS also compiled geological information (structure, lithology, quartz veins etc) from the relevant 1:250,000 QMAP map sheets. A detailed description of the directory structure and GIS file metadata is given in Appendix 1.

Over 7500 new geochemical point data were derived from over 100 open-file reports held by Crown Minerals and integrated into the GNS Regchem database. These data included stream sediment and rock chip data. The data selected from technical reports were at scale appropriate for the study (1:10,000 and smaller), and for this reason prospect-scale drill hole data and soil geochemical data were unable to be included. Several hundred hours were spent sourcing, assessing and entering the data, as well as carrying out important QA checks.

The paper-based data held by Crown Minerals in open file exploration reports provides an invaluable geochemical resource that remains to be fully utilised at a national or regional scale for mineral and environmental studies. The quality of the data held in the reports was better than expected, with more

than 70 percent of reports reviewed providing data of acceptable quality. This project has started the process of converting an important national resource into a format that can be more easily used and updated in GIS and other information systems. It is vital that this process continues and that all new geochemical information obtained from explorers is provided in digital form. The development of a National Minerals Information System to manage and distribute this type of information is an important next step in the process, and will be critical to the future of the exploration industry in New Zealand.

Data classification in GIS and spatial modelling techniques

Data classification

Data compiled prior to the modelling stage were reclassified in accordance with the mineralisation models described by Christie (2002). These reclassified maps were either computer-generated from predetermined spatial criteria such as buffering, extrapolation or interpolation, or from expert-assigned attributes of genetic significance within the GIS data tables. These data were used to calculated spatial relationships between the exploration model data layers and the data layer containing the spatial data to be modelled; in this case historic occurrences of mesothermal Au mineralisation. The key derivative exploration data that were tested for geological spatial association with known mineralisation in this study included:

- Host rock and terrain preference of known deposits
- Proximity to macroscopic fold hinges
- Proximity to concentrations of mesoscopic folds
- Lithofacies (e.g., sandstone:mudstone occurrences, greenschist horizons)
- Correlation with density of quartz veins
- The relative structural depth of Mesozoic deposits, particularly in relation to the textural zones, isograds and the foliation thickness and mica grain size work of Mortimer (2001)
- Metamorphic grade discontinuities as shown in Mortimer (2000)
- · Relationship to mesoscopically "folded" versus "platy" schist
- Relationship to the dip of foliation
- Geochemistry of host rocks

Spatial correlation analyses

As a first step in the spatial correlation calculation, a 200 by 200 m grid was generated over the Mesozoic and Paleozoic areas of gold mineralisation respectively. The size of the grid was chosen to represent the minimum likely extent that would be covered by an economic gold deposit given current technology and economic constraints. These areas were defined for each deposit type using the models described by Christie (2002). The spatial correlations were calculated assuming the known deposits have a 0.7 km² sphere of influence. As described by Bonham-Carter (1997), the spatial correlation (prior probability) of a feature can be calculated by using the relationship of the area covered by the data variable being tested and the number of training data points (Weights of Evidence technique). This produces a W+ result for when the feature is present and a W- result when the feature is absent (Appendix 2). A contrast value C is then calculated from the difference. The standard deviations of W (Ws and Cs) are calculated, from which the Studentised value of the contrast (StudC) can then be calculated (the ratio of the standard deviation of the contrast Cs to the contrast C). StudC gives an informal test of the hypothesis that C=0 and as long as the ratio is relatively large, implying the contrast is large compared with the standard deviation, then the contrast is more likely to be real. Ideally a StudC value larger than (-)1.5 can be considered as a positive or negative correlation (Bonham-Carter 1997). This ratio is best used as a relative indicator of spatial correlation, rather than an absolute sense. In this study a strong correlation is inferred from StudC values >3.0, moderate correlations inferred from StudC values between 3.0-1.5, weak correlations inferred from StudC values between 1.5-0.5 and poor correlations inferred from StudC values <0.5.

Mineral deposit locations for hard rock gold mineralisation were extracted from the GERM mineral deposit database. Following data validation, the prospect database was then reviewed, checking data and excluding all prospects that are alluvial or unrelated younger gold mineralisation. A training data set was then subset from this database by selecting those prospects with historic production recorded in the database. This training data-set accounts for 60% of the total number of hard rock mesothermal gold deposits in the GERM database. The training datasets were then subdivided according to the Paleozoic or Mesozoic mineral deposit classification of Christie (2002), with 144 deposits used for the Paleozoic training dataset.

Spatial correlation results

The results from the spatial correlation analysis are listed in Appendix 2 and summarised for each deposit type in Tables 3 and 4. The summaries have been compiled to highlight the most important exploration parameters for each deposit model. This was done to put the genetic models for mesothermal gold mineralisation into an exploration context. The results from the spatial analysis can therefore be used to develop realistic models to help targeting during more detailed scale exploration.

The spatial correlation analysis was subdivided into general geologically related themes, which are discussed below:

- Internal structure
- External structure
- Geology temporal
- Geology lithology
- Geochemical.

Exploration Data	Comment
Qtz Vein Density	Simple and effective exploration tool to be collected
	during geological mapping
Stratigraphy	Good geological mapping critical.
Rock type	Strong host rock control, geochemical or mechanical?
SS As, Au, Pb, Ag and Cu	Mesozoic mineral systems geochemically complex. Therefore multi-element geochemical techniques
	appropriate.
Structural Intensity	Suggests a structural control at a regional scale. Detailed structural mapping and analysis in GIS
	critical.
Rock Au, As, Pb, Zn, Ag, Sb and Cu	Geochemistry a strong indicator of mineralisation. More detailed sampling should be carried out. Soil
Regional Fault Intensity	There appears to be a regional structural control along
regional radit menory	deep-seated faults.
Fold Style	Relates to degree and style of deformation. Possible
	depth relationship. More detailed mapping
Foliation style	Suggests a relationship to metamorphism. Studies on metamorphism important.
Lower Order Fault Intensity	Structural control is important at a local scale, but which faults?
Textural Grade	Suggests a metamorphic control at a broad scale.

Table 3: Key geological and geochemical criteria for exploration for Mesozoic

 mesothermal gold mineralisation in order of greatest spatial correlation.

Exploration Data	Comment				
Stratigraphy	There is a strong stratigraphic control at a regional scale that defines permissive areas. These appear to				
Structural Intensity	be age related. Significant structural control at a regional and prospect scale. Detailed structural mapping and analysis in GIS				
Rock type	faulting. Sandstone units with interbedded shale horizons important. Strong host rock control, geochemical or mechanical?				
Bedding Variance	Requires detailed mapping. Identifies areas of structural disruption				
Fold Tightness Density Map	Mineralisation in the Reefton area appears to be controlled by areas where folds become tighter at a prospect scale. Requires detailed prospect mapping				
Crustal Faults	There appears to be a regional structural control along deep-seated faults.				
Qtz Vein Density	Simple and effective exploration tool to be collected during geological mapping				
SS As and Au	Paleozoic mineral systems geochemically simple. Therefore focus on Au and As.				
Rock Au and As	Geochemistry a strong indicator of mineralisation. More detailed sampling should be carried out. Soil sampling appropriate targeting technique.				
Table 4: Key geological and geoc	Table 4: Key geological and geochemical criteria for exploration for Paleozoic				

mesothermal gold mineralisation in order of greatest spatial correlation.

Internal and external structural geology

The variability of internal structures such as bedding, lineation, foliation and cleavage measurements were modelled using a moving average technique. These derivative maps were developed to test the spatial relationship between mineralisation and areas of structural complexity. These maps had no to weak correlation with Mesozoic mineralisation. However, the bedding disruption map had a high correlation of 11.6 with Paleozoic mineralisation, possibly related to the association of this style of mineralisation with folding. Structural intensity maps were also produced by combining all the structures mapped in an area and gridding the density of the number of structures per unit cell using a kernel gridding technique in Spatial Analyst. Both Paleozoic and Mesozoic mineralisation gave high spatial correlations of 14-16 with the high-density structural zone, which probably represent areas of higher strain on a regional scale. Mesozoic gold mineralisation has an interesting correlation with areas of variable foliation measurements (3.1) and to a greater degree those areas mapped as S2 foliation (11.3). This suggests mineralisation may be constrained to a particular deformation event, which can be mapped in the field.

Linear trace data, including fold axial plane and fault orientations and intersections, were then buffered using the methodology described by Partington et al. (2001) to determine the optimum distance for the greatest number of prospects from the feature. Each data layer was coded with relevant attributes and processed using ArcView and the Arc-SDM extension software (Kemp et al., 2001) to assess the spatial correlation of each modified variable with a training data set. The folds and faults from both QMAP and GMNZ 1:1M map data sets were tested. The GMNZ 1:1M data gave better defined StudC values (7-8 compared to -6.3-0.8) compared to the more detailed QMAP data. It is clear that although both Mesozoic and Paleozoic mineralisation are associated with faults, not all faults are associated with mineralisation. The attributes mapped for the QMAP dataset are not of sufficient detail to distinguish faults associated with mineralisation compared to those with no association, and more work is required to clarify this relationship. It is interesting, however, that the GMNZ 1:1M scale faults give a good spatial correlation, but only at a regional scale of 3-4 km. This suggests there may be a regional scale structural control on the location of hydrothermal systems

responsible for mineralisation that breaks down at a more detailed scale. This emphasises the need for detailed structural mapping, especially the timing of structures with respect to mineralization, when targeting prospect scale exploration. Both GMNZ 1:1M and QMAP scale fault intensity maps, gridded using the kernel method in Spatial Analyst, gave high spatial correlations for both mineralisation types (9-11 and 5-8), in contrast to the buffered fault data. It appears that there are localised areas controlling mineralisation even along faults spatially associated with mineralisation. The density of faulting in an area seems to provide a better indicator of mineralisation than distance from or along particular faults.

There is no correlation of Mesozoic mineralisation with folding and a weak correlation with Paleozoic mineralisation (1.6). This contrasts with the strong spatial correlation of folding with Paleozoic mineralisation in the Reefton area (a 500 m area around the fold axes, C=1.8 and studC=5.4) and 600m from faults, C=1.3 and studC=4.2: Partington et al., 2001). This suggests that fold axes are relatively more important in controlling mineralisation at a local scale and differs from mining district to mining district. This may relate to a lack of good geological information away from Reefton, or more likely, and similar to Victorian Slate Belt deposits, Paleozoic mineralisation has a variety of structural controls on mineralisation at a local level.

Both the folds and faults were split into sub-domains relating to strike and summarised according to their trend. They were buffered and the spatial correlation of deposits with distance from the structures graphed. The sub-domain trends of the folds and faults were then used to see if mineralisation was related to a preferred structural trend (Appendix 2). Mesozoic mineralisation is spatially correlated with NE and NW trending faults (1.7 and 2.7) and there is a good spatial correlation of E trending faults with Paleozoic mineralisation (3.6). The relationship between mineralisation and differing fault-fault intersection and fold-fault intersections was investigated by creating a point theme of intersections using ArcView and buffering around the intersection points. The results for this analysis for both types of mineralisation are given in Table 5 and Table 6. The spatial correlations are very weak suggesting exploration models using structural intersections are not appropriate for either type of mesothermal gold mineralisation in New Zealand.

	1 N-S	2 NE-SW	_3 E-W	4 NW-SE
1 N-S	NA	NC	NC	1400, 1.74
2 NE-SW		NA	NC	NC
3 E-W			NA	2200, 1.16
4 NW-SE				NA

Table 5: Mesozoic fault intersection spatial correlation matrix.NA Not applicableNC No Correlation

	1 N-S	2 NE-SW	3 E-W	4 NW-SE	
1 N-S	NA	800, 3.97	NC	NC	
2 NE-SW		NA	NC	NC	
3 E-W			NA	NC	
4 NW-SE				NA	

Table 6: Paleozoic fault intersection spatial correlation matrix.NA Not applicableNC No Correlation

Lithology

Lithological and stratigraphic controls on mineralisation for both type of deposits were tested using the QMAP data theme. Various rock type and stratigraphic attributes were tested for spatial correlations with known mineralisation. There is a strong host rock control on both types of mineralisation at a regional scale (Appendices 2, 3, 4, 5 and 6). Paleozoic mineralisation is strongly spatially associated with the Greenland Group of rocks (27.2) and other sequences of a similar age (Appendix 3). Sandstone, mudstone, argillite sequences have the greatest spatial correlation with Paleozoic mineralization (Appendix 4), although there is also a strong correlation with basalt in one area that is worth investigating further (11.4). Mesozoic mineralisation in contrast has a strong spatial association with metamorphosed rocks (Appendix 6), especially schist (16.3) and metapelite (16.1). There is a strong association with particular textural grades (III: 5.2, IV: 4.0) and foliation thickness (6.9), using maps developed by Mortimer (2001), which can be mapped in the field at a regional scale (Appendix 2). This appears to be related to interpreted depth of burial (Mortimer, 2000), which also gives a similar spatial correlation (6.3).

One of the more controversial questions currently being researched in economic geology is the role that granites play in the genesis of gold deposits. There is often a clear spatial association between granites of a certain age and mesothermal gold mineralisation (e.g. Partington and McNaughton 1997; Partington and Williams 2000), but more commonly the association is inferred from geochemistry or isotope analysis. Granite contacts were buffered for granites with similar ages to both types of mineralisation to test for any spatial relationship between granites gold mineralisation (Appendix 2). Neither type of mineralisation has any spatial association at a regional scale with temporally associated granites. However, this may not hold true at a more detailed scale as suggested by work by Partington et al. (2001) in the Reefton area. This is an area where a more extensive research effort is needed.

Gold deposits are commonly associated with large additions of SiO_2 in the form of quartz veins. Quartz veins host many of the high-grade shoots in both Paleozoic and Mesozoic deposits. However a large proportion of the veins are barren. Despite this, the presence of a high density of quartz veining can define areas of fluid flow within and along regional scale structures (e.g. Partington and McNaughton, 1997; Partington et al., 2001). A quartz vein density map was created by selecting a subset of guartz veins in the Mesozoic and Paleozoic terranes from the QMAP guartz vein data layer. The linear quartz vein theme was converted from polylines to regular points every 10m along the line defining the guartz vein. A density map was then created using Spatial Analyst's density gridding tool, using the kernel technique with a 10 km search radius. The vein-density map is based on veins in the data-set that are believed to be associated with mineralisation. Data are missing from the Marlborough area and the data-set has an uneven data coverage, probably biased by outcrop distribution and historical production. The quartz vein density map gives a very strong correlation with the training data-set (Paleozoic mineralisation 8.6 and Mesozoic mineralisation 27.0; Appendix 2) for both types of mineralisation. The high StudC value for this data layer suggests that this relatively inexpensive data collection technique may be a highly sensitive exploration tool. Additional data from exploration reports and future QMAP sheets should be collected to complete the coverage.

Geochemical data sets

Exploration geochemistry is the method by which a mineral deposit can be delineated by the primary envelope of chemical element enrichment around the mineralised zone and/or a secondary dispersal pattern of chemical elements, developed by weathering and erosion of the deposit. The primary envelope and secondary pattern typically form pronounced geochemical anomalies that present a larger exploration target for mineralisation than would be provided by the economic mineral deposit itself.

In the last twenty years large numbers of mineral deposits have been delineated using exploration geochemistry in many regions of the world. A significant proportion of exploration expenditure since the 1980s has, therefore, been directed towards geochemical exploration, including regional reconnaissance programs, localised follow-up surveys and exploratory drilling. In deeply weathered

terrains, exploration geochemistry has generally proved more successful in targeting mineralisation than exploration geophysics. Unfortunately, New Zealand has missed out on the recent advances made in exploration geochemistry to the extent that this project is the first attempt to compile geochemical information at a regional scale in New Zealand. Consequently the datasets currently available in New Zealand are incomplete and analysed using less accurate analytical techniques than are current practise. Never-the-less the paper and digital databases held by Crown Minerals and GNS offer a treasure-trove of new information for explorers wishing to re-evaluate New Zealand's mineral potential.

The objective of exploration geochemistry today remains unchangedand that is to delineate geochemical signatures related to mineralisation. The geochemical information used in this study was restricted to those trace elements traditionally expected to be associated with mesothermal gold deposit (Ag, As, Au, Cu, Pb, Zn, Sb and W; Appendix 2 and Appendix 7). Geochemical anomalies were defined using a simple statistical approach in an attempt to take account of the vast amount of missing data. It is intended that the geochemical anomaly maps used in the study are used as a positive indicator of an areas mineral potential. No areas should be discounted on the basis of the current geochemical coverage. The complete digital geochemical database is provided on the CD for the user to carry out more detailed geochemical targeting studies and we hope it will encourage the collection and submission of any new geochemical information in digital form.

The percentiles for each dataset, excluding missing data (=0), were calculated in ArcView and the top 10 percentile excluded from the definition of anomalous and background datasets (Appendix 7). This was done to account for log-normal distribution of the data. The anomalous threshold value was taken at the 90 percentile of the truncated dataset (Appendix 7). The anomalous dataset was then buffered every 100 m over a 4 km radius to test for a spatial correlation with known mineralisation. Table 7 summarises the chosen anomaly thresholds used to create the geochemical anomaly themes and the resulting spatial correlation values. The spatial correlation values were then added cumulitively from the lowest buffer distance to highest buffer distance. The buffer distance with the greatest spatial correlation was then used to define a sphere of influence for the anomalous samples. The background values were also buffered using a similar sphere of influence and cut by the anomalous buffer. The result is a three value coverage of missing data, background geochemistry and anomalous geochemistry.

The spatial correlations for the pathfinder elements are given in Appendix 2, and the expected geochemical associations of Au and As gave very good correlations over a low buffer distance (Table 7). The distance that gave the best spatial correlations with mineralisation is consistent with known genetic models for gold mineralisation. Also, the distances which gave the best spatial correlations for the rock chip geochemistry is significantly lower than for stream sediment geochemistry, which again is consistent with the greater level of dispersion expected in stream sediments. The most significant result from this analysis is the difference spatial geochemical associations between Paleozoic mineralisation and Mesozoic mineralisation. Paleozoic mineralisation has a relatively simple geochemical association of Au and As, with high spatial correlation values of 4.0-8.0, whereas Mesozoic mineralisation has a more complex association of As, Au, Sb, Ag, Cu and Pb with very high spatial correlation values of 6-16. Traditional geochemical pathfinder exploration techniques appear to work well for Mesozoic gold deposits and are less definitive for Paleozoic gold deposits.

Data Set	Upper cut	Total	Anomalous	Total	Mesozoic	Paleozoic
		analysed	threshold	used	studC	studC
RK Ag	0.1 ppm	1369	0.001	1223	13.3	None
SS Ag	1.3 ppm	9444	0.7 ppm	8282	6.1	4.3
RK As	452 ppm	2239	50 ppm	1368	14.1	3.8
SS As	60 ppm	5958	40 ppm	5375	15.3	8.3
RK Au	1000 ppb	1872	70 ppb	1685	14.6	3.5
SS Au	190 ppb	7880	40 ppb	7096	NA	NA
SS Au PC	712 ppb	2237	119.8 ppb	2013	10.5	4.8
SS Au BLEG	3320	199	1820 ppb	179	NA	NA
SS Au Sieve	80 ppb	5444	17 ppb	4907	NA	NA
SS Au B&S	100 ppb	5643	20 ppb	5102	4.7	6.9
RK Cu	67 ppm	2523	39 ppm	2272	12.5	2.4
SS Cu	55 ppm	15232	39.2 ppm	13719	7.0	5.7
RK Pb	27 ppm	2562	20 ppm	2314	13.5	4.5
SS Pb	35 ppm	14512	28 ppm	13259	None	3.1
RK Sb	32 ppm	841	13 ppm	757	11	None
SS Sb	1.9 ppm	3091	0.38 ppm	2783	4.9	None
RK W	365 ppm	659	19.6 ppm	593	None	None
SS W	34 ppm	6856	14 ppm	6183	5.7	1.5
RK Zn	110 ppm	2546	91 ppm	2303	10.2	4.4
SS Zn	110 ppm	14589	92 ppm	13165	2.8	4.6

Table 7: Summary statistics for chosen geochemical themes used in the study.

PC = pan concentrate sample.

BLEG = bulk leach extractable gold sample.

NA = not analysed.

None = no spatial correlation.

SS = stream sediment.

RK = rock chip

B&S = BLEG and stream sediment combined.

Prospectivity modelling results

Prospectivity mapping, using weights of evidence techniques (Bonham-Carter et al. 1988; Bonham-Carter 1997; Agterberg et al. 1993, Partington et al., 2001), was carried out over the Paleozoic and Mesozoic areas of interest at approximately 1:250,000 scale. Because there is a significant difference in spatial associations between geochemistry and geology, which tend to be independent of each other, two prospectivity models were run for each deposit type: one focussing on geological controls; and the other using the geochemical themes. The themes used in the prospectivity modelling for each model and their weights of evidence StudC values are listed in Tables 8-13. The most important spatial variables that should be used during any more detailed prospect scale exploration for Mesozoic and Paleozoic mesothermal gold mineralisation are listed in Tables 3 and 4 respectively. The accepted genetic model for the formation of mesothermal shear zone Au style mineralisation was used to constrain the input data themes for the analysis along with their spatial correlation to known mineralisation. The scale of the analysis is not intended to target mineralisation at prospect scale, but rather, provide information for the exploration industry to be used to target for tenement acquisition. More detailed data such as prospect scale geological mapping, soil sampling geochemical information and drill assay data need to be acquired for prospect scale work either by new exploration or by converting existing data into digital format from exploration reports held by Crown Minerals. Users are encouraged to create their own models by experimenting with different combinations of the derivative raster grid files provided on the CD.

Mesozoic prospectivity model

Once the prior probabilities for each data layer are calculated, it is then possible to calculate a post probability model by combining the various data layers. These are calculated by weighting the values of each cell in the data layer according to their prior probabilities and then adding the weighted values of each data layer together (Bonham-Carter 1997). A model for the prospectivity of Mesozoic gold mineralisation was constructed using the grid themes listed in Table 8. The model was developed using Arc-SDM software through Spatial Analyst in ArcView. The themes were all converted into binary grid themes where possible to reduce processing time. The number of variables used were also kept to a minimum to reduce the potential for conditional independence between the selected themes as discussed by (Bonham-Carter 1997).

Grid theme	Description	Variables	С	StudC
Qvdenrc	Quartz Vein Density	5	6.95	16.74
Ssas	As stream sediment anomalies	2	2.80	7.86
Rkau	Au rock chip anomalies	2	3.43	6.44
Qstrain	Deformation intensity	3	2.50	13.32
Rkas	As rock chip samples	2	2.58	8.68
Fltauden	Density of faulting related to mineralisation	2	3.80	22.68
Texmet	Textural zones	4	3.41	3.39
Fltmzne	NE trending faults	2	3.62	22.67
Fltmznw	NW trending faults	2	5.13	34.02
Ssau	Au stream sediment anomalies	2	1.58	4.65

Table 8: Grid themes used in the Mesozoic prospectivity model based on the mineral desposit model described by Christie (2002).

The model was created using the Calculate Response menu in Arc-SDM and selecting the grid themes listed in Table 8. The model consists of a grid response theme containing the intersection of all of the input themes in a single integer theme. Each row of the attribute table contains a unique row of input theme values, the number of training points, area in unit cells, sum of weights, posterior logit, posterior probability, and the measures of uncertainty (See attribute table Mzpmap1.dbf and Mzpmap1woe1.dbf on the CD). The variances of the weights and variance due to missing data are summed to give the total variance of the posterior probability. The response theme can be mapped by any of the fields in the attribute table. Various measures to test the conditional independence assumption are also reported (Table 9). Conditional independence is a significant problem in this model, especially between the geological themes. This is not unexpected with geological datasets and the posterior probabilities should be thought of as relative favourabilities. The normalised probability attribute gives a much better measure of probability.

Theme	SSAS	RKAU	QSTRAIN	RKAS	FLTAUDEN	TEXMET	FLTMZNE	FLTMZNW	SSAU
Qvdenrc	0.0000	0.2430	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ssas		1.0000	0.0000	0.4666	0.9894	0.0000	0.8152	0.1442	0.0000
Rkau			0.2478	0.1329	0.9074	0.5602	0.6008	0.8787	0.6985
Qstrain				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Rkas					0.0000	0.0000	0.0000	0.0000	0.2416
Fltauden						0.0000	0.0000	0.0000	0.0000
Texmet							0.0000	0.0000	0.8009
Fltmzne								0.5907	0.0000
Fltmznw									0.0000

Table 9: Chi² test of conditional independence for the Mesozoic model. Those values <0.015 and in red indicate a spatial correlation between themes.

Figure 2: Mesozoic prospectivity map for the Otago region.

The Mesozoic gold mineralisation prospectivity map for the Otago region successfully defines many of the historic goldfields, even though much of the data from the Macraes district remains on closed file due to the continuing operation at the Macraes gold mine (Figure 2). Several new areas are also highlighted that warrant additional follow-up work. The Mesozoic prospectivity map of the Marlborough area highlights several new areas with no historic mineral occurrences and highlights the potential for Mesozoic gold mineralisation on the southern end of the North Island (Figure 3).

The Mesozoic Prospectivity model has successfully reduced the initial search area at a regional scale and focuses on the areas with similar combinations of geological and geochemical variables that have recorded gold production in the past. Data density maps were compiled for the Mesozoic gold areas, which were developed by combining all geochemical sample data points, structural measurements and geochronological sample points into a single theme. A density grid theme was then modelled using the Kernel technique with a search radius of 5 km. This map was then compared with the prospectivity maps to examine the influence of data density on the location of the areas of high prospectivity (Figures 4 and 5). As was expected data density does have some influence on the location of the areas of highest prospectivity, but other geological and geochemical factors are more important. However, those areas with low data coverage still have the potential to be prospectivity in areas of low data density. Those areas with low data density offer potential for new greenfields targets, but with a greater investment risk. These maps are useful in that they highlight the areas where new exploration investment should be focussed.

Figure 3: Mesozoic prospectivity map for the Marlborough region.

Figure 4: Data density map for the Otago region.

Figure 5: Data density map for the Nelson, Greymouth and Marlborough regions.

The prior probability values from the prospectivity analysis can be used to prioritise the potential for individual prospects or historic mining districts. Table 10 gives a list of historic Mesozoic gold prospects in order of priority as defined by the study. These are highlighted as prospect priority maps on Figures 6 and 7.

Historic prospect	Locality	Probability
New Royal Standard	Carrick Goldfield	0.99997540
Crown & Cross	Carrick Goldfield	0.99997540
Border Chief	Carrick Goldfield	0.99997540
Heart of Oak	Carrick Goldfield	0.99997540
Elizabeth	Carrick Goldfield	0.99997540
Colleen Bawn	Carrick Goldfield	0.99997540
Last Shot	Carrick Goldfield	0.99997540
Kohinoor Number One	Carrick Goldfield	0.99997540
Kohinoor Number two	Carrick Goldfield	0.99997540
New Caledonia	Carrick Goldfield	0.99994961
Vale of Avoca	Garrick Goldfield	0.99991896
Caledonia	Carrick Goldfield	0.99991896
New Find	Carrick Goldfield	0.99991896
Rob Roy	Carrick Goldfield	0.99991896
Star of the East	Carrick Goldfield	0.99991896
John Bull	Carrick Goldfield	0.99991896
Heart of Midlothian	Carrick Goldfield	0.99983400
Round Hill (Golden Point)	Golden Point Road	0.99894057
Berry (Golden Point)	Golden Point Rd	0.99894057
Innes (Macraes Flat lode)	Macraes Flat Lode Field	0.99894057
Mills (Macraes Flat lode)	Macraes Flat lode field	0.99894057

Historic prospect	Locality	Probability
Maritana (Golden Point)	Golden Point lode field	0.99894057
White Horse	Carrick Goldfield	0.99867361
Inkster & Partys' Reef	Dunstan Mountains	0.99707044
Try Again	Carrick Goldfield	0.99585363
Callery River	Burton Glacier	0.99556493
Duke of Edinburgh Lode	west of Golden Point	0.99425673
Golden Ridge (Macraes FI)	Macraes Flat Lode Field	0.99425673
Tate's Reef (Dunback Rd)	old Dunback Road	0.99425673
Deepdell Mine	Golden Point lode	0.99378755
Deepdell (Golden Point)	Golden Point Road	0.99378755
Golden Bell (Golden Point	Golden Point Rd	0.99287976
Buckland's Workings (Puk)	Barewood, Pukerangi	0.99287976
Shaft No3 (Barewood)	Pukerangi	0.99287976
Welcome Reef (Pukerangi)	Pukerangi	0.99287976
Shaft No1 (Barewood)	Pukerangi Field	0.99287976
Betty's Reef (Pukerangi)	Pukerangi	0.99287976
Main Lode	Macetown District	0.99198400
Germania	above Macetown	0.99198400
Katherine	above Macetown	0.99198400
Homeward Bound Mine	above Macetown	0.99198400
Invercargill	above Macetown	0.99198400
Finns Lease	above Macetown	0.99198400
Tipperary North Mine	above Macetown	0.99198400
Caledonian	above Macetown	0.99198400
Geraldine Mine	above Macetown	0.99198400
Canton Mine	above Macetown	0.99198400
Tipperary Mine	above Macetownn	0.99198400
	above Macetown	0.99198400
Tipperary South Mine	above Macetown	0.99198400
		0.99198400
Jubliee No 1	Valrau Valley, Top Valley	0.98751505
Robert Burns	Carrick Gold Field	0.98646792
Nil Desperandum Coldon Coto		0.90040792
Golden Gale		0.90040792
Shaft No2 (Barewood)	near Tajeri River	0.96440009
Royal Standard	Carrick Goldfield	0.97668728
Stanely Lode	Carrick Goldfield	0.97668728
Macetown Mine	above Macetown	0.97218491
Dunolly	above Macetown	0.97218491
Bonanza Lode (Dunback HI)	Dunback Hill Black Creek	0.96707257
Hawksburn	Hawksburn, Bannockburn	0.94721842
Young Australian	Carrick Goldfield	0.93612778
Ounce Mine	Macraes Flat	0.93171059
Tasman's Choice	Davis Ck, Top Valley	0.93168513
Wellington Mine	abandoned mine, Top Valley	0.93168513
Jubilee No 2	Top Valley	0.93168513
J. Bruhns Lode	Mare Burn	0.90951830
Mt Highlay Mine	Mt Highley, Mareburn	0.90951830
Nunns	Mareburn?	0.90951830
Zealandia Reef	S of Hindon	0.90495782
Rise & Shine Mine	Bendigo Goldfield	0.81059293
Scotsmans	above Macetown	0.80044333
Coronation Lode	Sister Peaks, Horse Flat	0.78222287
Golden Dykes Claim	Yankee Gully, Terawhiti	0.78130157
Phoenix Claim	Breakneck Ck, Terawhiti	0.78130157
Bendigo Gold Mine	Bendigo	0.75793062

Historic prospect	Locality	Probability
Aurora Mine	Bendigo Goldfield	0.75793062
Alta Reef	Bendigo Goldfield	0.75793062
Come in Time	Bendigo Goldfield	0.64409158
Victoria Lode (Nenthorn)	Nenthorn	0.58503257
Consolidated (Nenthorn)	Nenthorn	0.58503257
Hop-pole Creek	Waikakaho-Cullen Saddle	0.51368845
Mahakipawa Claim	Head of Cullen Creek	0.51368845
Mt Patriarch	Mt Patriarch, Wairau Valley	0.46721398
Cotters Creek	Cotters Creek	0.46557144
Mersey Reef	Thompsons Gorge	0.44000728
Defiance Mine	above Macetown	0.42235031
Premier Mine	above Macetown	0.42235031
Sew Hoy & Co	above Macetown	0.42235031
Gladstone Mine	above Macetown	0.42235031
General Havelock	above Macetown	0.42235031
Alliance mine	above macetown	0.42235031
Golden Link	above Macetown	0.42235031
Lady Fayre	above Macetown	0.42235031
Maryborough Mine	above Macetown	0.42235031
Black Angel	above Macetown	0.42235031
All Nations Mine	above Macetown	0.42235031
Garabaldi Mine	Garibaldi Mine	0.42235031
Morning Star	above Macetown	0.42235031
Duke of Edinburgh	above Macetown	0.42235031
Victor Emmanuel	above Macetown	0.42235031
Daddy Lode (Nenthorn)	Nenthorn	0.40766357
Jacob Lode (Nenthorn)	Nenthorn	0.40766357
NZ Gold & Tungsten Mine	Mare Burn	0.38019220
Eureka Lode (Nenthorn)	Nenthorn	0.22542403
Home Rule Lode (Nenthorn)	Nenthorn	0.22542403
Taioma Lode	Nr Mullocky Ck Junction	0.20378033
Sutherlands	Bartletts creek	0.13867576
Sainsbury's Reef	Skippers Goldfield	0.13788930
Leviathan	Shotover Goldfield	0.13788930
Crystal Mine	Skippers	0.11835170
Cornubia	Skippers Goldfield	0.11835170
Eureka/Jennings Reef	Harris Mountains	0.11835170
Shotover Consolidated	Upper Shotover	0.11835170
Zeta Lode	Arrow Gorge	0.10338817
The Pyritic Lode	Schadrach Ck Arrow Valley	0.10338817
West of England (Oturehu)	Oturhua Field	0.10130276
Great Eastern (Oturehua)	Oturehua Field	0.10130276
Rough Ridge	Rough Ridge	0.10130276
Golden Progress Oturehua	Rough Ridge, Oturehua	0.10130276
Galatea Mine	Matarua Stream	0.10026961
Golden Point	Queen Charlotte Sound	0.06958818
Smile of Fortune	Deep Ck, wakamarina valley	0.06009611
	Game Hen Stream	0.05326032
Wakamarina, Deep Creek	vvakamarina valley	0.04387968
Endeavour Inlet	Endeavour Inlet	0.03809867
		0.03652912
	Rees Valley	0.03086047
Otago Central (Oturehua)		0.02273988
Biack Gully	Diack Gully	0.02067107
Dakers IIII Claim	Kaiwharawhara Stream	0.0200/10/
Nicholoono Doof		0.0200/10/
INICIOISONS REEL	Ulayu	0.01740854

Historic prospect	Locality	Probability
Saddle Hill Reef	W of Fairfield	0.01609006
Walshe Vein	Canaan	0.01285692
Achilles Gold Mines	Skippers Gold Field	0.00941555
Fiddes Reef	Wilberforce	0.00890646
Wilsons Reward Reef	Wilberforce	0.00890646
McQuilkans Reef	?	0.00890646
Poerua Reefs (South Lode)	Poerua Reefs	0.00890646
Exhibition Reef	Obelisk Old Man Range	0.00822162
Whites Reef	Obelisk Old Man Range	0.00822162
Surprise Lode (Nenthorn)	Nenthorn	0.00776193
Cape Jackson Mine	Cape Jackson	0.00726906
Lots Wife Lode	Lots Wife	0.00690945
Sams Creek-Riordans	Sams Creek, Takaka River	0.00689300
Sams Creek West	Sams Creek, Takaka River	0.00689300
Sams Creek, Doyles	Sams Creek, Takaka River	0.00689300
Golden Gully (Wiggens)	not known	0.00455152
Maori Lode	Upper Shotover	0.00403047
Excelsior Reef	Obelisk Old Man Range	0.00403047
Nicholsons Reef	Old Man Range Hyde rock	0.00403047
Sams Creek, Main Zone	Sams Creek, Takaka River	0.00393762
Sams Creek, SE traverse	Sams Creek, Takaka River	0.00393762
Sams Creek North	Sams Creek, Takaka River	0.00393762
Anvil Zone, Sams Creek	Sams Creek, Takaka River	0.00393762
No2 Reef Blackstone Hill	Blackstone Hill	0.00388116
Mount Patriarch	South of Mount Patriarch	0.00338358
Wealth of Nations Claim	Te Whiti Creek, Terawhiti	0.00329111
Caledonian Claim	Dowsetts Ck, Terawhiti	0.00329111
Empire Claim	Reef Ck, Terawhiti	0.00329111
Golden Crown Claim	Golden Ck, Terawhiti	0.00329111
Albion Claim	Farley Creek, Terawhiti	0.00329111
Kemp & Symes	Old Man Range	0.00170832
Ridge nr Mt Argentum	Paringa River	0.00144611
Gladstone Reef	300 m off Smith Road	0.00144611
Galena Creek	Argentum Range	0.00144611
Hura Creek	Hura Creek	0.00140385
Taipo Reefs	Taipo Reefs	0.00140385
Nuggety Gully Lode	Nuggety Gully	0.00126094
Canada & Ocean View Lodes	Tokomairiro River	0.00126094
Barrons Flat, Sams Creek	Sams Creek, Takaka River	0.00093968
Skeleton Lode	Roaring Meg	0.00068082
Ridge below Mt Lindsay	Ridge below Mt Lindsay	0.00056743
Groves	Bonnie Jean Ck	0.00052624
Mount Snowden	South of Lake Stanley	0.00044560
Orkney Reef	Dunstan Mountains	0.00038718
Ophir	?	0.00037649
Arethusa Claim	Longwood Mins, Gorge Stm	0.00026500
Printz Battery (Longwood)	Longwood Ranges	0.00026500
	Istrinus So, Preservation I	0.00026500
Digwood Tops	Diablerte Deef	0.00026500
Stavansons Claim	Skippore Deint	0.00020174
Mitomo Divor	Whiteomo Diver	0.00019005
		0.00012007
Lambda Lada	Arrow Corgo	0.00010467
Critorion mino	Arrow B Red poor Arrowtow	0.00010407
	Crown Torraco	0.00010407
Columbia Lodo		0.00010407
		0.00010407

Historic prospect	Locality	Probability
Queensbury Lode?	Roaring Meg Valley	0.00010467
Gentle Annie Lode	Roaring Meg District	0.00010467
Roaring Meg Lode Two	Roaring Meg Basin	0.00010467
Roaring Meg Lode One	Roaring Meg Basin	0.00010467
Hendersons Lode	Roaring Meg Creek	0.00010467
Conroys	?	0.00010467
Earnscleugh Quartz Reef	Earnscleugh	0.00006635
Meggat Burn Reef	Prentice Road	0.00004326
Flag Waterfall Lode	Flag Old Woman Range	0.00002205
Crossans Reef	Alexandra District	0.00002205
Bush Point Lode	Garvie Mountains Nokomai	0.00002179
Cowan Ck, 2 km from mouth	Cowan Ck,2 km from mouth	0.00001788
Canton Lode	SSW of Waipori Stn	0.00000982
ABC-Nuggety Gully	Waipori	0.00000982
OPQ Lode	Lawrence-Waipori Road	0.00000982
Bella Lode	Nr Lake Mahinerangi	0.00000982
Coppermine Ck, headwaters	Mataketake Range	0.00000856
Try Again Reef	SW of Table Mound	0.00000746
Alpha Lode	Arrow Gorge	0.00000396
O'Neills Reef	Old Man Range	0.00000377
Blue Lake Lode	Garvie Mountians	0.00000169
Gabriels Gully Lode	West of Wetherston	0.00000169
Gow Creek Lode	Flagstaff	0.00000169
Coxs Lode	Lammerlaw Stream	0.00000071
Bootlemans	Devils Creek	0.00000071
Boatmans	Devils Creek	0.00000071
Cosmopolitan Lode	Lammerlaw Stream	0.00000071
Drain Creek	Little Wanganui tributary	0.00000000
Allen River	Headwaters of Mokihinui R	0.00000000

Table 10: Mesozoic gold prospects prioritised by prior probability values from the prospectivity grid theme.

Figure 6: Prioritised Mesozoic gold prospects in the Otago region.

Figure 7: Prioritised Mesozoic gold prospects in the Marlborough region.

Paleozoic prospectivity model

The model for the prospectivity of Paleozoic gold mineralisation was constructed in a similar way to the Mesozoic mineralisation model and used the grid themes listed in Table 11. As with the Mesozoic model the themes were all converted into binary grid themes where possible to speed the processing time up and the number of variables used were kept to a minimum to reduce the potential for conditional independence.

Grid theme	Description	Variables	С	StudC
Pzstrat	QMAP stratigraphy	21	6.78	15.15
Pzlithgrd	Lithologies derived from the QMAP data	9	5.63	15.39
Bedvarrec	Grid theme of bedding strike variability	4	3.38	9.48
Ssas	As stream sediment anomalies	2	1.82	5.27
Ssau	Au stream sediment anomalies	2	2.77	5.27
Pcau	Pancon Au stream sediment anomalies	2	1.73	3.56
Rkas	As rock chip anomalies	2	2.65	3.13
Rkau	Au rock chip anomalies	2	7.15	0.71
Qvdenrc	Quartz vein density grid theme	4	7.27	20.25

Table 11: Grid themes used in the Paleozoic prospectivity model based on the mineral deposit model decribed by Chrisite (2002).

Like the Mesozoic model the Paleozoic model consists of a grid response theme containing the intersection of all of the input themes in a single integer theme (See attribute table Pzpmap2.dbf and Pzpmap2woe1.dbf on the CD). Various measures to test the conditional independence assumption are also reported (Table 11). Conditional independence is not as great a problem in this model as compared with the Mesozoic prospectivity model, especially between the geochemical themes. However, the geological datasets do have a degree of conditional dependence and again the posterior probabilities should be thought of as relative favourabilities. The normalised probability attribute gives a much better measure of probability.

Theme	PZLITHGRD	BEDVARREC	SSAS	SSAU	PCAU	RKAS	RKAU	QVDENRC
Pzstrat	0.0000	0.8521	0.9731	1.0000	1.0000	1.0000	1.0000	1.0000
Pzlithgrd		0.0000	0.8073	0.9662	0.9687	0.9996	1.0000	0.9995
Bedvarrec			0.8612	0.8657	1.0000	0.9913	1.0000	0.0000
Ssas				0.1035	0.1432	1.0000	1.0000	0.9309
Ssau					0.0983	1.0000	0.0000	1.0000
Pcau						1.0000	0.0000	1.0000
Rkas							1.0000	1.0000
Rkau								1.0000

Table 12: Chi² test of conditional independence for the Paleozoic model. Those values <0.015 and in red indicate a spatial correlation between themes.

The Paleozoic gold mineralisation prospectivity map successfully defines the historic goldfields like Reefton in the Greymouth-Nelson region, even though much of the data from the Reefton district remains on closed file due to the continuing operations at the Reefton gold mine (Figure 8). There is significant mineral potential in the Cambrian metasediments and volcanics in the Nelson area. However much of this area lies within a National Park. Two areas of Greenland Group rocks to the north and west of the Reefton deposits are worthy of follow-up investigation.

The Paleozoic Prospectivity model, like the Mesozoic prospectivity analysis, has successfully reduced the initial search area at a regional scale and focuses on the areas with similar combinations of geological and geochemical variables that have recorded gold production like the Reefton mine. Data density maps were also compared with the prospectivity maps to examine the influence of data density on the location of the areas of high prospectivity (Figure 5). The areas of highest prospectivity do correspond with the areas with better data coverage. However, there are areas of high mineral potential in areas of low data density suggesting that the geological and geochemical factors are more important indicators of an area's prospectivity. The areas with low data coverage have the potential to be prospective but at a greenfields exploration level.

The prior probability values from the prospectivity map were used to prioritise the potential for individual prospects or historic mining districts. Table 13 gives a list of historic Paleozoic gold prospects in order of priority as defined by the analysis. These are highlighted as prospect priority maps on Figure 9.

Prospect	Locality	Probability
Mataki Stream	Balloon Creek tributary	0.99093202
Lady of the Lake Mine	Boatmans Creek, Cronadun	0.98547564
Welcome Mine	Caples Creek	0.98547564
South Hopeful Mine	Boatmans Creek	0.98547564
Inglewood Mine	Burkes Ck - Murray Ck	0.98547564
Phoenix Mine	Murray Creek	0.98547564
Victoria Mine	Murray Creek	0.98547564
Band of Hope Mine	Muray Creek	0.98547564
Perseverance Mine	Murray Creek	0.98547564
Golden Fleece Mine	Burkes Ck - Murray Ck	0.98547564
Venus Mine	Murray Creek	0.98547564
No.2 Sth Keep-it-Dark	Crushington	0.98547564
Nil Desperandum Mine	Crushington	0.98547564
Keep-it-Dark Mine	Crushington	0.98547564
Energetic Mine	Murray Creek	0.98547564
Wealth of Nations Mine	Crushington	0.98547564
New Discovery	Carton Čk, Quigleys Track	0.98547564
Ulster Mine	Madman Creek, Reefton	0.98547564
Andersons-Invincible Mine	Ajax Creek, Reefton	0.98547564
Globe-Progress Mine	Globe Hill	0.98547564
Inkerman West Mine	Slab Hut Creek, Merrijigs	0.98547564
Inkerman Mine	Rainy Creek, Merrijigs	0.98547564
Rainy Ck-Supreme Mine	Rainy Creek, Merrijigs	0.98547564
Maori Gully Group	?	0.98547564
Hard-to-Find Mine	Slab Hut Creek, Merrijigs	0.98547564
Scotia Mine	Slab Hut Creek, Merrijigs	0.98547564
Gallant Mine	Slab Hut Creek, Merrijigs	0.98547564
Happy Valley Mine	Slab Hut Creek, Merrijigs	0.98547564
Sir Francis Drake Mine	Slab Hut Creek, Merrijigs	0.98547564
Golden Lead-OK Mine	OK Ck-Cumberland Ck area	0.98547564
South Blackwater Mine	Snowy River, Waiuta	0.98547564
Big River Mine	Big River	0.98547564
National Claim	Big River	0.98547564
St George Mine	St George Stm, Snowy R.	0.98547564
Bonanza Lode	Auld Creek, Reefton	0.98547564
Bastite Creek	Southwest of Cobb Reservoi	0.97350887
Tablelands area	Balloon Creek headwaters	0.96218849
Waingaro River	Waingaro River	0.96218849
Specimen Hill Mine	Little Boatmans Creek	0.96009371
Homeward Bound Mine	Little Boatmans Creek	0.96009371
Golden Arch	Italian Creek, Cronadun	0.94047546
Pactolus Mine	Pactolus Stm, Boatmans Ck	0.94047546
Argus Mine	Boatmans Creek, Cronadun	0.94047546
Hopeful Mine	Caples Ck, Boatmans Ck	0.94047546
Fiery Cross Mine	Caples Creek, Boatmans Ck	0.94047546
Just-in-Time Mine	Boatmans Creek	0.94047546
Reform Mine	Boatmans Creek	0.94047546
Lone Star Mine	Boatmans Creek	0.94047546
Eureka	Caples Ck, Boatmans Ck	0.94047546
Gladstone-Russell Mine	Russell Creek, Reefton	0.94047546
A1 Mine	A1 Creek, Merrijigs	0.94047546
Merrijigs Mine	A1 Creek, Merrijigs	0.94047546
Snowy Creek Mine	Snowy River, Waiuta	0.94047546
Homer Mine	Quartz Creek, Waiuta	0.94047546
Hurley's Leader	Greek Creek, Waiuta	0.94047546
South Big River Mine	Sunderland Ck, Big River	0.94047546
Millerton	Millerton	0.94047546

Prospect	Locality	Probability
Aorangi Mine	NW side Wakamarama Range	0.92233450
Anthill Mine	NW Wakamarama Range	0.92233450
Zealandia Mine	Middle branch, Owen River	0.88257012
Bulmer Creek	Bulmer Ck, Upper Owen R.	0.88257012
Ruby Lake Creek	nr Ruby Lake, Lockett Rang	0.85181361
Morning Star	NW side Wakamarama Range	0.83645668
Alexander Mine	Alexander River	0.81399745
Ophir Mine	Cole Ck, SE of Rockville	0.79678119
Donnelly Creek	Peel Stream tributary	0.73906159
Nuggety Creek	Rolling River, Wangapeka	0.73906159
Rolling River	Rolling River	0.73906159
Upper Snow River	Snow River	0.71228277
Slippery Knob	North of Anatoki River	0.71228277
Meter Creek, Zone B	Takaka River, Cobb area	0.68076656
Meter Creek, Zone A	meter Creek, Takaka River	0.68076656
Meter Creek	Takaka River, 300m downstr	0.68076656
Meter Creek, roadside	Meter Creek, Takaka River	0.68076656
Meter Creek, below road	Meter Creek, Takaka River	0.68076656
Meter Creek	Takaka River	0.68076656
Meter Creek	east bank Takaka River	0.68076656
Magnetite Creek	Waingaro River tributary	0.61803045
Minerva (Blackball Creek)	Minerva, Blackball Ck	0.54021217
Mundic Gully	Aorere Goldfield	0.47726490
Johnstons United Mine	East of the Aorere River	0.47726490
Phoenix Mine	Cole Ck, Aorere River	0.47726490
New Find	NW side Wakamarama Range	0.45680714
Roaring Meg Creek	Roaring meg Creek	0.37350646
Greer Creek	Waingaro River eastern tri	0.33483369
No Name Creek	Waingaro River eastern tri	0.33483369
Enterprise Mine	Western side of Owen R.	0.32038498
Maori Gully	Maori Gully trib.	0.31298451
Friday Creek	Sandhills Creek tributary	0.30029297
Hardy Ridge	Hardy Ridge	0.28716292
Kirwan's Reward Mine	Kirwans Hill	0.26833174
Cloustons Mine	Gordons Pyramid	0.26793926
Golden Ridge	NW side Wakamarama Range	0.26588474
Paradise Spur	North of Anatoki River	0.26565057
Caledonian Mine	Awarau or Larry River	0.26140030
Taffy (Croesus Knob)	Taffy,Paparoas	0.21482158
Rocky River	Aorere Goldfield	0.16499767
Portia Creek	Boulder Lake Area	0.16499767
Anatoki Range	Anatoki Range	0.15085599
Haupiri Range	Haupiri Range Southern	0.14237492
Cedar Ck (Mt Greenland)	Mt Greenland Cedar Ck	0.11625288
Parsons Ck, Boulder Lake	Boulder Lake	0.09652877
Kaituna Stream	Kaituna Stream	0.09376533
Beaconstield Mine	Waimangaroa	0.08206589
vvestport I win Battery	lvvaimangaroa	0.08206589
Old Britannia Mine	Ivvaimangaroa	0.08206589
Alpine United Mine	Irishmans CK, Lyell Ck	0.08206589
	Britannia CK, Waimangaroa	0.08206589
	Lichborne Ck, New Creek	0.08206589
VICTORY LODE	INEW Creek, Buller River	0.08206589
Ngakawau River		0.08206589
Rough and Tumble	I ributary Mokininul R.	0.07981942
		0.05/6925/
iiviiodie vvandabeka River	Ivvandabeka Riveľ	0.05501812

Prospect	Locality	Probability
Rocky R - Forrester Ck	Upstream of Rocky River -	0.04399012
Bray Creek	Upper Snow River	0.04399012
Old Hut Creek	Southern Anatoki River tri	0.04399012
Washbourn's Reef	Aorere Goldfield	0.04140357
Frazer Stream	Anatoki River area	0.04008652
Kea Creek	Parapara Area	0.01869177
Republic Mine	Stony Creek, Waimangaroa	0.01289543
Mt Rangitoto	Mt Rangitoto	0.01090355
Langdons Reef (Sewell Pk)	Langdon Creek	0.01090355
Red Hill Mine	Graham Ck. Aorere River	0.00836911
Golden Point Mine	Devils Creek, Reefton	0.00762625
Inkerman South Claim	Slab Hut Creek, Merrijigs	0.00762625
Exchange-Industry Mine	Cumberland Ck, Merrijigs	0.00762625
Cumberland Mine	Cumberland Ck, Merrijigs	0.00762625
North Big River Mine	Golden Lead Ck, Big River	0.00762625
Golden Treasure Mine	Murray Creek	0.00762625
Lower Calphurnia Creek	Northern trib Anatoki Rive	0.00682440
Old Hut-Colour Creek	West of Sparrow Lake	0.00682440
Rocky River	Aorere Goldfield	0.00667888
Dahls Reef	On ridge above Rocky R.	0.00667888
Beecham Creek	Aorere River tributary	0.00446370
Asbestos Creek	Takaka River, Cobb area	0.00419607
Snow River	Snow River	0.00367873
Calphurnia Ck East	Northern Tributary of	0.00287793
Blackwater North Mine	Waiuta	0.00178633
Blackwater Mine	Waiuta	0.00178633
Beilby's Reef	Southern slopes Mt Owen	0.00122915
Fletcher Creek	Aorere Goldfield	0.00119501
Blackadder Mine	Mt Baldy, Maruia	0.00074827
Donnellys Creek (Osmers)	Donnellys Ck Mine, Osmers	0.00045280
Red Queen	South Bank of Mokihinui R	0.00007512
Silvermine Creek	Karamea River western trib	0.00007512
Fenian Ck - Scorpion Ck	Fenian Range, Karamea area	0.00007288
Red Spur	Cascade River Catchment	0.00005273
No.2 South Larry's Mine	Awarau or Larry River	0.00004008
south side of Hunt Hill	Paringa	0.00000125
Zalas Battery-Beaufils Ck	Totara State Forest	0.00000018
Wheel Creek	Wheel Creek, Maruia River	0.00000018

Table 13: Paleozoic gold prospects prioritised by prior probability values from the prospectivity grid theme.

Geochemical prospectivity model

One of the strengths of using geochemistry in exploration is that some of the subjective bias is removed. Consequently a third model was created using only the geochemical anomaly themes, especially those with strong spatial correlation with both styles of mineralisation (Table 14). This model was also developed to test the usefulness of regional geochemistry in exploration for gold mineralisation in New Zealand, especially as this study is the first attempt at using/analysing recently compiled digital geochemical data at a regional scale. Another advantage of using geochemical data only is that conditional dependence between datasets is reduced to a minimum (Table 15).

Grid theme	Description	Variables	С	StudC
SsAs	As stream sediment samples	2	2.41	10.26
RkAu	Au rock chip samples	2	3.29	6.84
RkAs	As rock chip samples	2	2.44	9.32
PcAu	Pancon Au stream sediment samples	2	2.80	7.86
SsSb	Sb stream sediment samples	2	0.44	2.26
SsAu	Au stream sediment samples	2	1.74	7.35

Table 14: Grid themes used in the geochemical prospectivity model.

As with the Paleozoic and Mesozoic prospectivity models the geochemical model consists of a grid response theme containing the intersection of all of the input themes in a single integer theme (See attribute table Chempmap.dbf and Chempmapwoe1.dbf on the CD).

Theme	RKAu	RKAs	PCAu	SSSb	SSAu
Ssas	1.0000	0.2134	0.5663	0.8695	0.0000
Rkau		0.1722	0.8163	0.6728	0.2771
Rkas			0.7363	0.0000	0.1867
Pcau				0.0000	0.0000
Sssb					0.3794

Table 15: Chi² test of conditional independence for the geochemical prospectivity model. Those values <0.015 and in red indicate a spatial correlation between themes.

Figure 10: Geochemical prospectivity map of the Otago region.

The geochemical prospectivity maps for both the Otago and the Greymouth-Nelson regions show similar prospective areas to the other prospectivity maps (Figures 2, 3, 8, 10 and 11). However, data density has a greater control on the identification of prospective areas. Several anomalous areas in the Haast region are identified that are not present in the Mesozoic prospectivity map and similarly an area identified immediately west of Reefton was not highlighted in the Paleozoic prospectivity map. These warrant additional follow-up work. (Figures 10 and 11).

Figure 11: Geochemical prospectivity map of the Greymouth, Nelson and Marlborough regions.

The geochemical prospectivity maps provide a useful tool for reviewing geochemical datasets at a regional scale. The success of these maps in identifying areas of known mineralisation also confirms the suitability of using geochemical techniques for mesothermal gold exploration in New Zealand. Furthermore the study highlights the valuable national database that resides with GNS in digital form and Crown Minerals in paper form. It is essential that work continue on developing and managing these datasets with the aim of creating a national-scale geochemical database.

Observations and future work

The project is the first of its kind for New Zealand and one of the first to be carried out at a regional scale anywhere in the world, and as such involved a large amount of investigation and experimentation into data collection, data capture and compilation, and finally geological modelling, all to ensure that a quality product of value was produced within the parameters and budget of the project. Not only has the project been successful in highlighting prospective areas for mesothermal gold, but a key outcome of the project has also been an increased understanding of the potential of the New Zealand minerals estate by the project team at GNS and Crown Minerals, and the

establishment of sound processes and procedures that can now be built upon for similar future studies. Such studies include investigation into epithermal gold, alluvial gold, and platinum mineralisation, among others.

Another key outcome from the study has been the data discovery exercise from the open-file technical reports held by Crown Minerals. Because the study was carried out at a regional scale, a large amount of detailed, prospect scale information such as drilling and soil sampling were not included. The digital capture of these data combined with more detailed geoscientific information held by GNS, for example QMAP, will add extra value to the current spatial database, confirming New Zealand as a world leader in developing and using new technologies as part of the country's knowledge economy. The provision of this information in an easily accessible and usable form is vital for the future of mineral exploration in New Zealand.

The maps generated by the prospectivity modelling consistently highlight areas of known mineralisation and generate targets where follow-up investigation is warranted. The prospectivity per unit area derived from the GIS modelling provides a measurable value that should change as new information comes to hand and, in addition to highlighting targets, can be used to measure the impact of increased exploration expenditure and assess the effectiveness of exploration investment. It is clear from this study that the South Island of New Zealand remains highly prospective for mesothermal gold mineralisation. Many of the highly prospective areas, which also contain historic mine workings, remain unpegged. This study highlights these areas, and also other areas where the potential for similar mineralisation exists with, possibly, no surface expression. The spatial analysis also highlighted the differences between Paleozoic mineralisation and Mesozoic mineralisation. Tables 3 and 4 define the most important controls on mineralisation model and more detailed geological and structure should play an important role in any exploration model and more detailed geological and structural information should be collected at a prospect scale to improve the accuracy of the models. This study also highlights the importance of geochemistry, especially for Mesozoic gold mineralisation, in identifying areas prospective for mineralisation.

As is the case with most studies, in addition to the end result of the analysis, valuable information and insight was gained during the analysis itself. This provided some important lessons and provided a focus on geological models and exploration methodologies. This is because the analysis allows the comparison of disparate data-sets and associations not easily recognisable between these data-sets. This work increased the confidence in using exploration models and techniques developed for mesothermal lode gold mineralisation in New Zealand. All three models only use a small amount of available data in an attempt to follow accepted genetic models for Mesozoic gold mineralisation and to reduce conditional independence. Users are encouraged to experiment with different geological variables based on their own exploration models. The data on the CD are provided to let explorers test ideas and exploration strategies before having to invest time and significant money in acquiring tenement packages and collecting data in the field.

Studies such as this should not be seen in the context of their end result but rather the start of a new way of making more economic and rational land management decisions. In terms of research these techniques need to be further refined to overcome problems of spatial interdependence common in geological data-sets. Other techniques such as fuzzy logic and neural network analyses should be trialled. We intend to expand this type of analysis to other deposit types and to research better ways that the statistical information produced by prospectivity modelling can be used in exploration management.

Acknowledgements

The following people are thanked for the considerable time and effort they put into this project: Paul Stigley as the Project Sponsor, Rebecca Parish and Alan Sherwood from Crown Minerals, Julie Lee, Biljana Lukovic, Mark Rattenbury, Janet Arnst, Dave Heron and Mike Isaac from Gracefield GNS, and Simon Cox, Ian Turnbull, Nick Mortimer, and Andy Tulloch, from Dunedin Branch GNS. The GIS and accompanying tests have benefited from reviews by Alan Sherwood from Crown Minerals, Simon Henderson from Ian Brown and Associates and Tony Christie and Mark Rattenbury from GNS. They are thanked for their time and constructive recommendations.

References

Atterberg FP, Bonham-Carter GF, Cheng Q, Wright DF 1993. Weighs of evidence modelling and weighted logistic regression for mineral potential mapping. In: Davis JC, Herzfeld UC (Editors), Computers in Geology, 25 Years of Progress, Oxford University Press, Oxford: 13-32.

Bonham-Carter, GF 1997. Geographic Information Systems for geoscientists: Modelling with GIS. Bonham-Carter GF, Agterberg FP, Wright DF 1988. Integration of geological data-sets for gold exploration in Nova Scotia. *American Society for Photogrammetry and Remote Sensing* 54: 171-183.

Christie AB 2002. Mesothermal gold deposits in New Zealand: mineral deposit models. Institute of Geological and Nuclear Sciences client report: 33 p. (provided on CD).

Kemp LD, Bonham-Carter GF, Raines GL, Looney CG 2001. Arc-SDM: ArcView extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis. http://ntserv.gis.nrcan.gc.ca/sdm/.

MacKenzie DJ, Craw D 2001. A 3-dimensional section through the Otago Schist, New Zealand. Proceedings of the 34th annual conference 2001, The Australasian Institute of Mining and Metallurgy, New Zealand Branch, pp. 31-41.

Mortimer N 1993. Geology of the Otago Schist and adjacent rocks. *Institute of Geological and Nuclear Sciences geological map* 7, scale 1:500,000.

Mortimer N 2000. Metamorphic discontinuities in orogenic belts: examples of the garnet-biotite-albite zone in the Otago schist, New Zealand. *International journal of earth sciences 89:* 295-306.

Mortimer N 2001. Foliation thickness and mica grain size: two new ways to subdivide the Otago Schist, New Zealand. Proceedings of the 34th annual conference 2001, The Australasian Institute of Mining and Metallurgy, New Zealand Branch, pp. 43-49.

Partington GA, McNaughton NJ 1997. Controls on mineralisation in the Howley District, Northern Territory: A link between granite intrusion and gold mineralisation. *Chronique de Recherche Miniere* 529: 25-44.

Partington G A, Williams PJ 2000. Proterozoic lode gold and (iron)-copper-gold deposits: A comparison of Australian and global examples. In: Brown P, Hagemann S (Editors), Gold, Society of Economic Geologists Reviews in Economic Geology 13: 69-101.

Partington GA, Christie AB, Cox SC 2001. Mineral resources assessment for the West Coast of New Zealand using spatial analysis in a GIS: A new exploration management and land-use management tool. Australasian Institute of Mining and Metallurgy Conference Volume, New Zealand Branch 34th Annual Conference, Dunedin 29-31 August, 141-16

List of Figures and Tables

- Figure 1. Major mesothermal gold deposits in New Zealand.
- Figure 2. Mesozoic prospectivity map for the Otago Region.
- Figure 3. Mesozoic prospectivity map for the Marlborough Region.
- Figure 4. Data density map for the Otago Region.
- Figure 5. Data density map for the Greymouth-Nelson and Marlborough Regions.
- Figure 6. Prioritised Mesozoic Gold prospects in the Otago area.
- Figure 7. Prioritised Mesozoic Gold prospects in the Marlborough area.
- Figure 8. Paleozoic prospectivity map for the Nelson-Greymouth region.
- Figure 9. Prioritised Paleozoic Gold prospects in the Nelson Greymouth area.
- Figure 10. Geochemical prospectivity map of the Otago region.
- Figure 11. Geochemical prospectivity map of the Greymouth-Nelson and Marlborough regions.
 - Table 1 Characteristic features of the Paleozoic and Mesozoic mesothermal gold deposits.
 - Table 2 Summary of data reviewed.
 - Table 3
 Key geological and geochemical criteria for exploration for Mesozoic mesothermal gold mineralisation in order of greatest spatial correlation.
 - Table 4
 Key geological and geochemical criteria for exploration for Paleozoic mesothermal gold mineralisation in order of greatest spatial correlation.
 - Table 5
 Mesozoic fault intersection spatial correlation matrix.
 - Table 6
 Paleozoic fault intersection spatial correlation matrix.
 - Table 7 Summary statistics for chosen geochemical themes used in the study.
 - Table 8
 Grid themes used in the Mesozoic prospectivity model based on the mineral deposit model described by Christie (2002).
 - Table 9
 Results of the chi2 test of conditional independence for the Mesozoic model.
 - Table 10 List of Mesozoic Gold prospects prioritised by prior probability values from the prospectivity grid theme.
 - Table 11
 Grid themes used in the Paleozoic prospectivity model based on the mineral deposit model described by Christie (2002).
 - Table 12 Results of the chi2 test of conditional independence for the Paleozoic model.
 - Table 13
 List of Paleozoic Gold prospects prioritised by prior probability values from the prospectivity grid theme.
 - Table 14 Grid themes used in the Geochemical prospectivity model.
 - Table 15 Results of the chi2 test of conditional independence for the Geochemical prospectivity model.

Appendices

- Appendix 1 GIS Data File Description
- Appendix 2 Spatial Analysis Results
- Appendix 3 Paleozoic Spatial Correlation Results Based on Stratigraphy
- Appendix 4 Paleozoic Spatial Correlation Results Based on Lithology
- Appendix 5 Mesozoic Spatial Correlation Results Based on Stratigraphy
- Appendix 6 Mesozoic Spatial Correlation Results Based on Lithology
- Appendix 7 Geochemical Statistical Summary

Appendix 1 GIS Data File Description

Appendix 1 Directory Structure and Metadata for Pmapsouth GIS CD

As discussed by Christie (2002) gold mesothermal gold mineralisation was subdivided into those occurrences associated with Paleozoic lithologies and structures and those occurrences associated with Mesozoic lithologies and structures. The GIS data structure has been organised using this subdivision and the metadata for files comprising the Pmapsouth GIS are described in the following sections. Folders are shown in bold and files in italics.

Grid Data:

pmapso	uth\griddata\	Raster Imag	e Files in ArcView Grid File Format
gridpms	chem	Grid	Geochemistry Prospectivity Model
-	Grid of the pros	pectivity model i	un for the geochemical prospectivity model. See the section on Prospectivity
	modelling in the fir	al report for a de	scription of how this model was developed.
mzpmap)	Ĝrid	Mesozoic Prospectivity Model
	Grid of the pro-	ospectivity mode	I run for Mesozoic gold mineralisation. See the section on Prospectivity
	modelling in the fir	al report for a de	scription of how this model was developed.
nzgravit	ygrd	Ĝrid	South Island Gravity Map
0	Grid of the regi	onal gravity map	of the South Island of New Zealand. The gravity data were not used in the
	analysis and the file	e is provided as a	back ground data set.
nzsi315g	grd	Grid	NW Hill-shaded DTM
	Grid of the region	onal Digital Terra	in Model, with a 315 degree sunshade, of the South Island of New Zealand.
	The spot height dat	a were not used i	n the analysis and the file is provided as a back ground data set.
nzsidtm	grd	Grid	NZ South Island DTM
	Grid of the region	onal Digital Terra	in Model of the South Island of New Zealand. The spot height data were not
	used in the analysis	and the file is pr	ovided as a back ground data set.
ргртар	Grid	Palaeozoic l	Prospectivity Model Grid
	of the prospectivity	model run for	Palaeozoic gold mineralisation. See the section on Prospectivity modelling in
	the final report for	a description of h	ow this model was developed.
	*	*	-
pmapso	uth\griddata\info:	This folder o	contains files required by the grid raster files to be used in ArcView. Note

ArcExplorer cannot use these files, nor can MapInfo as both GIS only use vector files. To view the raster files in either ArcExplorer or MapInfo the raster grid fields need to be converted into image files, e.g., tif, jpeg etc and rectified for the program you are using. You need the ArcView extension Spatial Analyst to manipulate or model these files in ArcView. If you want to carry out your own prospectivity models using the gridded derivative files please load the extension Arc-SDM.

pmapsouth\griddata\pmapgrid\ The grid raster files in this folder were developed as binary derivative raster files to be used for developing prospectivity models as described in the accompanying report and using the methodologies developed by Bonham-Carter et al. 1988; Bonham-Carter 1997; Agterberg et al. 1993, Partington et al., 2001. These references are provided in Pmapreport and useful references folder on the CD. You need the ArcView extension Spatial Analyst to manipulate or model these files in ArcView. If you want to carry out your own prospectivity models using the gridded derivative files please load the extension Arc-SDM.

bedvarrec Grid **Bedvarrec** Reclassified grid of the measure of relative variability of bedding measurements from the QMap qbeds point data vector file (StudC 11.6). The grid was modelled using a moving average technique and applies to Palaeozoic mineralisation only (Appendix 2). chempmap Grid **Geochemistry Wof E Posterior Probability** Grid of the unique grid response theme of the geochemical prospectivity model. See the section on Prospectivity modelling in the final report for a description of how this model was developed. fldau Grid Fldau Grid of cells where fold axes are buffered to 2,000m and applies to Paleozoic mineralisation only (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 1.6) with known mineralisation. Grid fldaunebf Fldaunebf Grid of cells where NE trending fold axes are buffered to2,400m and applies to Paleozoic mineralisation only (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 7.8) with known mineralisation.

only (Appendix 2). This feature has the greatest spatial association (StudC 4.1) with known mineralisation.
fldsty Grid Fldsty Crid of collo containing dominantly E2 folds and applies to Masszaia minoralization only (Appendix 2). This
feature has the greatest spatial association (StudC 11.4) with known mineralisation
fltauden Grid Fltauden
Grid of cells the highest density of faulting and applies to both mineralisation styles (Appendix 2). This feature
has the greatest spatial association (StudC 5-11) with known mineralisation of both types.
fltauegrdbuf Grid Fltauegrdbuf
Grid of cells where E trending faults associated with mineralisation are buffered to 800m and applies to Paleozoic mineralisation only (Appendix 2). This buffer distance from the feature has the greatest spatial
association (StudC 3.6) with known mineralisation
fltmzint Grid Fltmzint
Grid of cells where N-NW fault intersections are buffered to 1,400m and applies to Mesozoic mineralisation
only (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 1.75) with
known mineralisation.
<i>fltmzne</i> Grid of calls where NE transing faults are huffered to 2,600m and applies to Masozoia minoralisation only.
(Appendix 2) This buffer distance from the feature has the greatest spatial association (StudC 1.7) with known
mineralisation.
fltmznw Grid Fltmznw Grid
of cells where NW trending faults are buffered to 3,000m and applies to Mesozoic mineralisation only (Appendix
2). This buffer distance from the feature has the greatest spatial association (StudC 2.7) with known
mineralisation.
fltnneinthf Grid of calls where N NW foult interspections are huffered to 200m and applies to Delegacia minoralisation only.
(Appendix 2) This buffer distance from the feature has the greatest spatial association (StudC 4.0) with known
mineralisation.
folsty Grid Folsty
Grid of cells containing S2 foliation and applies to Mesozoic mineralisation only (Appendix 2). This feature has
the greatest spatial association (StudC 11.2) with known mineralisation.
folthick Grid Folthick
Grid of cells where foliation thickness values after Mortimer (2001) are ≥ 2 and applies to Mesozoic mineralisation only (Appendix 2). This feature has the greatest spatial association (StudC 6.0) with known
mineralisation (Appendix 2). This reduce has the greatest spatial association (Stude 0.5) with known
folvarrec Grid Folvarrec
Reclassified grid of a grid raster file of the measure of relative variability of foliation measurements from the
QMAP qfol point data vector file (StudC 3.1). The grid was modelled using a moving average technique and
applies to Mesozoic mineralisation only (Appendix 2).
<i>lithmz</i> Grid of calls containing lithologies spatially associated with Mesozoia minaralisation (Appendix 2)
mallaugrid200 Grid Grid Mallaugrid200
Grid used to develop spatial correlations and prospectivity models for Mesozoic mineralisation.
mzdepth Grid Mzdepth
Grid of cells where petrologic and metamorphic data suggest a depth of burial of <5km (after Motimer (2000)),
and applies to Mesozoic mineralisation only (Appendix 2). This buffer distance from the feature has the greatest
spatial association (StudC 6.3) with known mineralisation.
<i>mzpmap1</i> Grid Miesozoic Wol E Posterior Probability Grid of the unique grid response them of the Mesozoic prospectivity model. See the section on Prospectivity
modelling in the final report for a description of how this model was developed
nzfltgrdbuf Grid Nzfltgrdbuf
Grid of cells where there an association with regional scale faults buffered to 3,500m and applies to both styles
of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC
8.6 for Palaeozoic mineralisation and 7.0 for Mesozoic mineralisation) with known mineralisation.
<i>palaugrid200</i> Grid Palaugrid200 Crid word to develop constal correlations and progradivity models for Palaozaia minoralization
ncau Grid Grid Cried Cried Contentions and prospectivity models for Paleozoic minieransation.
Grid of cells where anomalous pan concentrate Au stream sediment samples are buffered to 1.000m and applies
to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial
association (StudC 4.8 for Paleozoic mineralisation and 10.5 for Mesozoic mineralisation) with known
mineralisation.
pzjiati Grid of collo containing the highest density of folding (fold tickture) and employ to the Dilation
Give of cents containing the highest density of folding (fold tightness) and applies to the Palaeozoic

Grid of cells containing fold fault intersection points buffered to 2,400m and applies to Paleozoic mineralisation

fldfltint

mineralisation style only (Appendix 2). This feature has the greatest spatial association (StudC 9.9) with known mineralisation. pzlithgrd Grid Pzlithgrd Grid of cells containing lithologies spatially associated with Palaeozoic mineralisation (Appendix 2). Paleozoic Wof E Posterior Probability pzpmap2 Grid Grid of the unique grid response theme of the Paleozoic prospectivity model. See the section on Prospectivity modelling in the final report for a description of how this model was developed. pzstrat Grid Pzstrat Grid of cells containing stratigraphically defined sequences or groups spatially associated with Palaeozoic mineralisation (Appendix 2). Grid Ostrain qstrain Grid of cells containing the highest density of structural disruption (a proxy measure for high strain) based on micro and macro structural measures and applies to both mineralisation styles (Appendix 2). This feature has the greatest spatial association (StudC 15.6 for Paleozoic mineralisation and 14.5 for Mesozoic mineralisation) with both types of mineralisation. Generated by Arc-SDM - Reclassify Tool qvdenrc Grid **Qvdenrc** Grid of cells where the highest density of quartz veins have been mapped in the QMAP Qvein theme, and applies to both styles of mineralisation (Appendix 2). This feature has the greatest spatial association (StudC 8.6 for Paleozoic mineralisation and 27.0 for Mesozoic mineralisation) with known mineralisation. Rkag rkag Grid Grid of cells where anomalous Ag rockchip samples are buffered to 600m and applies to Mesozoic mineralisation only (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 13.3) with known mineralisation. Grid Rkas rkas Grid of cells where anomalous As rockchip samples are buffered to 700m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 3.8 for Paleozoic mineralisation and 14.1 for Mesozoic mineralisation) with known mineralisation. rkau Grid Rkau Grid of cells where anomalous Au rockchip samples are buffered to 500m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 3.5 for Paleozoic mineralisation and 14.6 for Mesozoic mineralisation) with known mineralisation. rkcu Grid Rkcu Grid of cells where anomalous Cu rockchip samples are buffered to 700m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 2.4 for Paleozoic mineralisation and 12.5 for Mesozoic mineralisation) with known mineralisation. rkpb Grid Rkpb Grid of cells where anomalous Pb rockchip samples are buffered to 700m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 4.5 for Paleozoic mineralisation and 13.5 for Mesozoic mineralisation) with known mineralisation. rksb Rksb Grid Grid of cells where anomalous Sb rockchip samples are buffered to 700m and applies to Mesozoic mineralisation only (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 11.0) with known mineralisation. rkzn Grid Rkzn Grid of cells where anomalous Zn rockchip samples are buffered to 1,000m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 4.4 for Paleozoic mineralisation and 10.2 for Mesozoic mineralisation) with known mineralisation. Grid Ssag ssag Grid of cells where anomalous Ag stream sediment samples are buffered to 1,200m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 4.3 for Paleozoic mineralisation and 6.1 for Mesozoic mineralisation) with known mineralisation. Grid Ssau ssau Grid of cells where anomalous Au stream sediment samples are buffered to 1,200m and applies to both styles of mineralisation (Appendix 2). This buffer distance from the feature has the greatest spatial association (StudC 6.9 for Paleozoic mineralisation and 4.7 for Mesozoic mineralisation) with known mineralisation. stratumz. Grid StratUMz Grid of cells containing stratigraphically defined sequences or groups spatially associated with Mesozoic mineralisation (Appendix 2).
Tables:

These tables are required by Arc-SDM to store the results of the various prospectivity models. They also provide statistical information on probability values, correlations coefficients and an analysis on conditional independence (Refer to Bonham-Carter et al. 1988; Bonham-Carter 1997; Agterberg et al. 1993, Partington et al., 2001 for a more detailed discussion on the concepts used in spatial analysis and prospectivity modelling. These references are provided in Pmapreport and useful references folder on the CD)

pmapsouth\propectivity tables\chempmap tables\

Chempmap1df-1.dbf	Probability test.
Chempmap1prb-1.dbf	Conditional independence matrix of calculated relation ship between each theme variable.
Chempmap1woe1.dbf	Spatial correlation matrix for variables comprising the model listing the W+, C and
	StudC values for each variable in each theme.
Chempmap1woevar1.dbf	Results of variance calculations for the Weight of evidence analysis.
Chempmap1wofe1.dbf	Prior probability, uncertainty and missing data results from the Weights of Evidence
	analysis. This table is joined to the Unique Conditions grid theme using the ID column
	in the Wofe table and the Value column in the Unique Conditions grid theme.
Chempmap1x2-1.dbf	Results of a Chi2 test for conditional independence of the data variables.

pmapsouth\propectivity tables\mzpmap tables\

Mzpmap1df-1.dbf	Probability test.
Mzpmap1prb-1.dbf	Conditional independence matrix of calculated relation ship between each theme variable.
Mzpmap1woe1.dbf	Spatial correlation matrix for variables comprising the model listing the W+, C and StudC values for each variable in each theme.
Mzpmap1woevar1.dbf	Results of variance calculations for the Weight of evidence analysis.
Mzpmap1wofe1.dbf	Prior probability, uncertainty and missing data results from the Weights of Evidence analysis. This table is joined to the Unique Conditions grid theme using the ID column in the Wofe table and the Value column in the Unique Conditions grid theme.
Mzpmap1x2-1.dbf	Results of a Chi2 test for conditional independence of the data variables.

pmapsouth\propectivity tables\pzpmap tables\

Pzpmap2df-1.dbf	Probability test.
Pzpmap2prb-1.dbf	Conditional independence matrix of calculated relation ship between each theme variable.
Pzpmap2woe1.dbf	Spatial correlation matrix for variables comprising the model listing the W+, C and StudC values for each variable in each theme.
Pzpmap2woevar1.dbf	Results of variance calculations for the Weight of evidence analysis.
Pzpmap2wofe1.dbf	Prior probability, uncertainty and missing data results from the Weights of Evidence analysis. This table is joined to the Unique Conditions grid theme using the ID column in the Wofe table and the Value column in the Unique Conditions grid theme.
Pzpmap2x2-1.dbf	Results of a Chi2 test for conditional independence of the data variables.

pmapsouth\propectivity tables\pmap spatial correlation tables

Numerous (370) spatial analysis correlation tables for Paleozoic and Mesozoic areas

D (• •
Data	C	escriptions:
	-	

pmapsouth\QMAP data dictionary

Describes the structure and design of the QMAP GIS database.

Reports:

pmapsouth\reports\
DepositReports
ProspectivityReport

Deposit model report. Final report.

pmapsouth\reports\useful references\

References pertaining to mineral prospectivity spatial modelling

Software:

pmapsouth\software\		
Arc-SDM	Prospectivity modellin	g software as ArcView extension
Wofe	Prospectivity modellin	g software as ArcView extension
pmapsouth\src\	Freeware Windows me	enu software and locally stored project files
Vector Data:		
pmapsouth\vector data\	Vector point, line and polygon manipulation in ArcInfo or Maj shape files can be viewed or anal copied as separate files before bei	datasets provided for viewing in ArcExplorer, or pInfo. The dbf data tables attached to the ArcView ysed in Word, Excel or Access. These files should be ng opened by these non-GIS software.
alluvialgolddeposits.shp	Point	GERM Alluvial Gold Deposits
beddi.shp	Point	OMAP Bedding Orientation Measurements
QMAP subset point	data theme of bedding orientation m	easurements.
cleav.shp	Point	QMAP Cleavage Orientation Measurements
QMAP subset point coast250 shn	data theme of cleavage orientation in Polygon	neasurements. NZ Coastline
Polygon theme of the	e New Zealand land area from the L	INZ 1:250K digital topographic dataset.
council.shp	Polygon	Regional Councils
Polygon theme of re	gional council boundaries for the So	uth Island derived from an unofficial source:
doc consunits.shp	Polygon	Conservation Land/National Parks
Polygon theme of va	rious land-use categories managed b	by the Department of Conservation (Doc) in New
Zealand.	A = 0	OMAD Faults Associated With Au
Line theme showing	the subset of faults from the QMAP	fault theme associated with Paleozoic and Mesozoic
fol_thickness.shp	Polygon	Mesozoic Foliation Thickness Map
Polygon theme map Mortimer (2001). This	ping the variation in foliation thickness theme subdivides the Otago Schist	ess derived from petrographic information after into domains relating to the grade of metamorphism and
foldau shn	Arc	OMAP Fold Axes Associated With Au
QMAP subset line th Mesozoic gold minera	neme of fold axial plane surface trace lisation.	es axes with a spatial association with Palaeozoic and
foldaxes.shp	Arc	QMAP Fold Axes
QMAP line data their folded hingy shp	me of fold axial plane surface traces. Polygon	Mesozoic Fold Style Man
Polygon theme mapp (1993)	ping the variation in fold style and ge	eneration with in the Otago Schist after Mortimer
folia.shp	Point	QMAP Foliation Orientation Measurements
QMAP subset point	data theme of foliation orientation m	neasurements.
<i>geosourc.shp</i> Polygon theme outli	Polygon ning data sources for the geological t	Geology Data Source themes in this project including geological units faults
folds, quartz veins, me	etamorphism, and structural measure	ment data.
germmin.shp Point theme subset f	Point rom the GERM database of historic	GERM Mineral Occurrences mineral occurrences and mineral workings, with
historical production is	t present, for the mesothermal Au ar	on of interest.
OMAP polygon data	a theme mapping greenschist (metavo	plcanic) occurrences.
gwschist.shp	Polygon	Mesozoic Crustal Depth Zone
Polygon theme mapp information after Mort thiskness perpendicula	ping the variation in interpreted crust timer (2000). This theme subdivides	tal depth of the schist derived from petrographic the Otago Schist into domains based the structural
hrmz.shp	Point	Prioritised Mesozoic Au Prospects
Gold potential of his <i>hrockgolddeposits.shp</i>	storic prospects based on the Mesozo Point	ic prospectivity model. GERM Hard Rock Gold Deposits
Subset point data the	eme of historic hard rock gold occurr	rences.
hrpz.shp Gold potential of his	Point storic prospects based on the Paleozo	Prioritised Palaeozoic Prospects ic prospectivity model.

lakes250.shp	Polygon	NZ Lakes
Polygon theme of	New Zealand lakes derived from the J	LINZ 1:250K digital topographic dataset.
linea.shp	Point	QMAP Lineation Orientation Measurements
QMAP subset poin	nt data theme of lineation orientation	measurements.
mzpmap.shp	Polygon	Mesozoic Prospectivity Model
This is a copy (vec	ctor file) of the prospectivity model ru	in for Mesozoic gold mineralisation. See the section on
Prospectivity model	ling in the final report for a descriptio	on of how this model was developed.
national coast.shp	Polygon	NZ Coastline
Polygon theme of	New Zealand coast and land area deri	ived from the LINZ 1:250K digital topographic dataset.
nzbasementterranes.shp	Polygon	NZ Basement Terranes (cover removed)
GMNZ-derived su	bset polygon data theme of geologica	l basement terranes extending offshore and with all cover
rocks removed.		τ, τ
nzfaults.shp	Arc	NZ 1:1M Faults
GMNZ 1:1M line	coverage of the major faults in New 7	Zealand.
nzgeochronolgy.shp	Point	NZ Geochronology
GSNZ/GNS point	theme of geochronological data.	
nzgeology.shp	Polygon	NZ 1:1M Geology
GMNZ regional p	olygon theme geology captured from	published 1972 1:1,000,000 scale map.
nzrkchm.shp	Point	Petlab Rock Chip Geochemistry
Subset of rockchip	digital geochemical point data from	the Petlab database held and managed by the Institute of
Geological and Nuc	lear Sciences for the South Island of N	New Zealand. This database was used as the basis for
deriving the geocher	mical anomaly themes used in the pro	spectivity modelling and provided on the CD.
nztenements.shp	Polvgon Mir	neral Tenements. Granted and Under Application
Polygon theme of	applications and current prospecting r	permits, exploration permits and mining licences as at the
beginning of Augus	t 2002.	······································
nzterranes.shp	Polygon	NZ Basement Terranes (onland outcrop)
GMNZ-derived po	olvgon theme mapping onland outcror	of the different geological basement terranes in New
Zealand		
nztowns.shp	Point	NZ Towns
Point theme of NZ	towns and suburbs derived from uno	fficial USGS source.
penetrative.shp	Polygon	Mesozoic Foliation Generation Map
Polygon theme ma	apping the variation in foliation derive	ed from field mapping after Mortimer (2001) This theme
subdivides the Otag	o Schist into domains relating to the g	rade of metamorphism and degree of deformation.
netlahmai shn	Point	Petlah Major Element Geochemistry
Subset of major el	ement digital geochemical point data	from the Petlab database held and managed by the
Institute of Geologic	cal and Nuclear Sciences for the South	h Island of New Zealand. This database was not used in
the prospectivity mo	delling and is provided on the CD as	a reference dataset for more detailed investigations
netlabtrace shn	Point	Petlah Trace Element Geochemistry
Subset of trace ele	ment digital geochemical point data f	rom the Petlah database held and managed by the
Institute of Geologic	cal and Nuclear Sciences for the South	h Island of New Zealand. This database was used as the
hasis for deriving th	e geochemical anomaly themes used i	in the prospectivity modelling and provided on the CD
nmscham shn	Polygon	Geochemistry Prospectivity Model
This is a conv (yea	tor file) of the prospectivity model ru	in for the geochemical prospectivity model. See the
section on Prospecti	vity modelling in the final report for a	a description of how this model was developed
nznman shn	Polygon	Palaeozoic Prospectivity Model
This is a conv (yea	tor file) of the prospectivity model ru	in for Palaeozoic gold mineralisation. See the section on
Prospectivity model	ling in the final report for a description	in for randozore gota inneralisation. See the section on
ahasegeo shn	Polygon	OMAP Basement Geology
Polygon theme sul	bset of OMAP basement (mostly pre-	Cretaceous) geological man units for the mesothermal
area of interest	site of Quinti busement (mostly pre-	creaceous) geological map ands for the mesothermal
afaults shn	Arc	OMAP Faults
OMAP line data th	heme of faults	
aveins shp	Arc	OMAP Quartz Vein Data
OMAP line data th	heme of quartz veins	
regchemss.shp	Point	Petlah Stream Sediment Geochemistry
Subset of digital g	eochemical point data of stream sedin	nent samples collected by exploration companies from
the Petlah database	held and managed by the Institute of (Geological and Nuclear Sciences for the South Island of
New Zealand This	database was used as the basis for der	iving the geochemical anomaly themes used in the
prospectivity model	ling and provided on the CD	
river250.shn	Arc	NZ Rivers
Line theme of NZ	rivers derived from the LINZ digital	topographic dataset.
rkaganombuff600m.shp	Polygon	Ag Rock Chip Anomaly Man
Silver rock chin at	nomaly polygon theme buffered to 600	0m, which has the greatest spatial correlation with known
	J F - JO	,

mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rkasanombuff700m.shp Polygon

As Rock Chip Anomaly Map

Arsenic rock chip anomaly polygon theme buffered to 700m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rkauanombuff500m.shp Polygon

Gold rock chip anomaly polygon theme buffered to 500m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rkcuanombuff700m.shp Polygon

Copper rock chip anomaly polygon theme buffered to 700m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rkpbanombuff700m.shp Polygon

Lead rock chip anomaly polygon theme buffered to 700m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rksbanombuff700m.shp Polygon

Antinomy rock chip anomaly polygon theme buffered to 700m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rkwanombuff800m.shp Polygon

Tungsten rock chip anomaly polygon theme buffered to 800m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

rkznanombuff1000m.shp Polygon

Zinc rock chip anomaly polygon theme buffered to 1,000m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

roads250.shp Arc

Line theme of NZ major roads derived from the LINZ digital topographic dataset.

Polygon **QMAP Intrusive Rocks** siintrusives.shp

QMAP subset polygon data theme of intrusive geological map units.

ssaganombuff1200m.shp Polygon Ag Stream Sediment Anomaly Map

Silver stream sediment anomaly polygon theme buffered to 1,200m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

ssasanombuff1400m.shp Polygon Arsenic stream sediment anomaly polygon theme buffered to 1,400m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

ssauanombuff1200m.shp Polygon

Gold stream sediment anomaly polygon theme buffered to 1,200m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

sscuanombuff800m.shp Polygon

Copper stream sediment anomaly polygon theme buffered to 800m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

sspbanombuff1000m.shp Polygon **Pb Stream Sediment Anomaly Map** Lead stream sediment anomaly polygon theme buffered to 1,00m, which has the greatest spatial correlation with

known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data. Pan Con. Au Stream Sediment Anomaly Map

sspcauanombuff1000m.shp Polygon

Gold pan concentrate stream sediment anomaly polygon theme buffered to 1,000m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

sssbanombuff1600m.shp Polygon

Sb Stream Sediment Anomaly Map Antinomy stream sediment anomaly polygon theme buffered to 1,600m, which has the greatest spatial

correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data.

sswanombuff1800m.shp Polygon W Stream Sediment Anomaly Map

Tungsten stream sediment anomaly polygon theme buffered to 1,800m, which has the greatest spatial correlation

Au Rock Chip Anomaly Map

Cu Rock Chip Anomaly Map

Pb Rock Chip Anomaly Map

Sb Rock Chip Anomaly Map

W Rock Chip Anomaly Map

Zn Rock Chip Anomaly Map

NZ Roads

As Stream Sediment Anomaly Map

Au Stream Sediment Anomaly Map

Cu Stream Sediment Anomaly Map

with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data. ssznanombuff2800m.shp Polygon **Zn Stream Sediment Anomaly Map** Zinc stream sediment anomaly polygon theme buffered to 2,800m, which has the greatest spatial correlation with known mineralisation. Non anomalous samples are also buffered to the same distance. Areas not covered by either polygon have no digital data. terrane bdy.shp **Mesozoic Schist Terrane Boundary** Arc Line theme of interpreted terrane boundary within the Otago Schist as defined by Mortimer(2000). texturalmet.shp Polygon **OMAP Schist Textural Zones** OMAP polygon theme mapping the textural variation in Mesozoic schist derived from field mapping and petrographic information after Mortimer(2000). This theme subdivides the schist into domains relating to the degree of foliation development and deformation. Polygon topography.shp NZ South Island DTM A copy (vector file) of the South Island DTM raster file. workden.shp Polygon **Data Coverage Map** Polygon theme of buffered geochemical, geochronological and structural points. pmapsouth\vector data\pmap files\ Folder containing point themes of historic mineral occurrences used as training data sets for the spatial analyses and prospectivity models.

mallautraining.shp	Point	Mesozoic Au Training Dataset
Mesozoic mine	eral occurrence training data set.	_
pallautraining.shp	Point	Paleozoic Au Training Dataset
Paleozoic mine	eral occurrence training data set.	-

Missing Data

There are more than one hundred new data themes provided on this CD. However, New Zealand still lacks good regional coverage of some digital data that are taken for granted in other countries, states and territories. Additional datasets that either need to be acquired or converted from paper form into digital form include:

- High Resolution Gravity
- High resolution EM
- High Resolution DTMs
- High Resolution Radiometric data
- High Resolution Magnetic data
- Prospect-scale soil sample geochemistry
- Prospect scale drill geochemistry from all drilling methods (RAB, RC and Diamond)

Appendix 2 Results from the Spatial correlation Analysis

Spatial Variable	Measure	Technique ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Internal Structure												
Structural Intensity	Strain	Grid density of 3 cleavage+lineation+foliation	8,800	12,571	104	1.5	0.1	-0.7	0.1	2.2	0.2	14.5
Bedding Variance	Moving average of variability of bedding data, Measure of structural disruption/folding	r Gridded data, which is then 2 reclassified into 10 categories from low variability to high variability	13,571	19,387	1	0.1	1.0	-0.1	1.0	0.1	1.4	0.1
Lineation Variance	Moving average of variability of lineation data, Measure of structural disruption	reclassified into 10 categories from low variability to high variability										None
Foliation Variance	Moving average of variability of foliation data, Measure of structural disruption	r Gridded data, which is then 3 reclassified into 10 categories from low variability to high variability	3,557	5,082	26	0.6	0.2	-0.1	0.1	0.7	0.2	3.1
Foliation style	Deformation style as a proxy for depth	Interpretation of field S2 mainly mapping of rock structure	12,034	17,191	124	1.0	0.1	-1.2	0.2	2.2	0.2	11.3
External Regio Structure	nal											
Distance From Crus Faults	stal Crustal scale structural control	Buffered faults 20000m at 3,500 500m intervals around faults	45,559	65,084	47	1.0	0.1	-0.2	0.1	1.2	0.2	7.0
Lower Order Faults	Structural control at a local level.	Buffered faults 4000m at 800 200m intervals around faults using ESRI buffer tool	35,428	50,612	14	0.2	0.3	0.0	0.1	0.2	0.3	0.8
Lower Order Fai Associated with Au	ults Structural control at a local level.	Buffered faults 4000m at 800 200m intervals around faults within 2500 metres of known workings using ESRI buffer tool	9,160	13,086	16	0.4	0.3	0.0	0.1	0.5	0.3	1.8

Spatial Variable	Measu	e		Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Lower Order associated mineralisation Orientation	Fault Preferr with structur NE-	ed orientation e	of	Buffered faults 4000m 200m intervals around fau within 2500 metres of kno workings using ESRI but tool. Select only Pz fau Select only N-trend faults.	at 2,600 ults wn ffer lts. ing	26,423	37,747	36	0.2	0.2	-0.2	0.2	0.4	0.3	1.7
Lower Order associated mineralisation Orientation	Fault Preferre with structur NW-	ed orientation e	of	Buffered faults 4000m 200m intervals around fau within 2500 metres of kno workings using ESRI but tool. Select only Pz fau Select only N-trend faults.	at 3,000 ults wn ffer lts. ing	6,375	9,107	74	0.2	0.1	-0.4	0.2	0.6	0.2	2.7
Regional Fault Intensity	/ Structu regiona determ faulting	al control a l scale ned by intensit	t as as ty of	Fault Density maps creat by creating a point even 10m along a fault the gridding the density of far points in the theme.	ted 2 ery aen ault	39,959	57,084	110	1.1	0.1	-0.9	0.1	2.0	0.2	11.8
Lower Order Fault Inter	nsity Structu determ faulting	al control ned by intensi	as ty of	Fault Density maps creat by creating a point even 10m along a fault the gridding the density of far points in the theme.	ted 2 ery aen ault	18,462	26,374	58	1.2	0.1	-0.3	0.1	1.6	0.2	9.6
N/NW Fault Intersection	ns Mineral intersed	sation controlle ting faults.	d by	Create point theme of faintersections. Then but round these points.	ault 1,400 ffer	2,714	3,877	12	0.5	0.3	-0.1	0.1	0.6	0.3	1.7
Fold-Fault Intersection	Mineral intersed	sation controlle ting folds and fa	d by ults.	Create point theme of faintersections. Then but round these points.	ault 2,600 fer	549	785	23	2.3	0.2	-1.0	0.3	3.3	0.4	9.2
Folds	Structu level.	al control at a	local	Buffered folds 10,000m 200m intervals around fo within 2500 metres of kno workings using ESRI but tool	at 1,400 lds wn ffer	9,517	13,596	5	0.7	0.4	0.0	0.1	0.7	0.5	1.6

Temporal

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Stratigraphy	Age range.	QMAP geology.	Star Formation 1	142	203	1	1.8	1.0	0.0	0.1	1.9	1.0	1.8
Stratigraphy	Age range.	QMAP geology.	Wakamari na Quartzite 2	10	14	1	4.6	1.0	0.0	0.1	4.6	1.0	4.4
Stratigraphy	Age range.	QMAP geology.	Aspiring lithologic associatio n 3	103	148	3	3.3	0.6	0.0	0.1	3.3	0.6	5.6
Stratigraphy	Age range.	QMAP geology.	Wanaka Lithologic al Associatio n 4	2,026	2,895	13	1.8	0.3	-0.1	0.1	1.8	0.3	6.3
Stratigraphy	Age range.	QMAP geology.	Caples Group 5	8,538	12,198	36	1.3	0.2	-0.2	0.1	1.5	0.2	8.0
Stratigraphy	Age range.	QMAP geology.	Haast Schist 6	5,623	8,034	56	2.2	0.1	-0.3	0.1	2.5	0.2	15.7
Stratigraphy	Age range.	QMAP geology.	Aspiring Lithologic al Associatio n 3	2,903	4,147	45	2.6	0.1	-0.3	0.1	2.9	0.2	16.9
Fold Style	Generation of structure relating to folding	e Interpretation of field mapping of rock structure	Hingy F2	2,277	3,253	47	1.7	0.1	-0.3	0.1	2.0	0.2	11.4
Geology													
Rock type	Rock composition.	QMAP geology.	semischist 1	3,281	4,687	5	0.3	0.4	0.0	0.1	0.3	0.5	0.7
Rock type	Rock composition.	QMAP geology.	mylonite 2	285	408	1	1.1	1.0	0.0	0.1	1.1	1.0	1.1
Rock type	Rock composition.	QMAP geology.	greenschi st 3	613	876	2	1.1	0.7	0.0	0.1	1.1	0.7	1.5
Rock type	Rock composition.	QMAP geology.	quartzite 4	110	157	1	2.1	1.0	0.0	0.1	2.1	1.0	2.1
Rock type	Rock composition.	QMAP geology.	metapelite 5	3,318	4,740	45	2.5	0.1	-0.3	0.1	2.8	0.2	16.1
Rock type	Rock composition.	QMAP geology.	schist 6	18,069	25,812	108	1.7	0.1	-0.8	0.1	2.5	0.2	16.3
Depth	Depth of burial	Interpretation of field mapping of rock structure	l schist <5 km	21,534	30,763	151	0.5	0.1	-2.7	0.5	3.2	0.5	6.3

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
			structural level										
Textural Grade	Mapped metamorp structural grade, as with metamorphism	hic and Zones interpreted from sociation mapping.	field III	8,002	11,431	69	0.6	0.1	-0.2	0.1	0.8	0.2	5.2
Textural Grade	Mapped metamorp structural grade, as with metamorphism	hic and Zones interpreted from sociation mapping.	field IV	12,182	17,402	86	0.4	0.1	-0.2	0.1	0.6	0.1	4.0
Foliation Thickness	Mapped metamorp structural grade, as with metamorphism	bhic and Zones interpreted f sociation petrographic analysis.	rom 2	12,144	17,349	146	0.5	0.1	-2.4	0.4	2.9	0.4	6.9
Qtz Vein Density	Density of quartz representing centres of fluid flow	veining Create point theme f possible linear quartz vein the Then create density r from points.	rom 4 eme. map	2,117	3,024	75	3.7	0.1	-0.6	0.1	4.3	0.2	27.0
Geochemistry													
Rock Ag	Geochemical pathf gold, which has geochemical within alteration around gold deposit	inder for Calculate anomalous va a larger using 90 percentile to signature the data and then the halos percentile for anomal s. threshold. Buffer up 4000m and test sp correlation.	lues 600 cut 90 lous to atial	83	118	39	3.0	0.2	-1.2	0.2	4.2	0.3	13.3
SS Ag	Geochemical pathf gold, which has geochemical within alteration around gold especially with d down rivers and stre	inder for Calculate anomalous val a larger using 90 percentile to signature the data and then the halos percentile for anomal deposits, threshold. Buffer up ispersion 10,000m and test sp eams. correlation.	lues 1,200 cut 90 lous to atial	1,054	1,505	28	1.1	0.2	-0.9	0.3	2.0	0.3	6.1

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Rock As	Geochemical pathfinder fo gold, which has a large geochemical signatur within alteration halo around gold deposits.	or Calculate anomalous value or using 90 percentile to cu e the data and then the 9 s percentile for anomalou threshold. Buffer up t 4000m and test spatia correlation.	is 600 ut 0 is o al	157	224	49	2.6	0.2	-1.0	0.2	3.6	0.3	14.1
SS As	Geochemical pathfinder for gold, which has a large geochemical signatur within alteration halo around gold deposits especially with dispersio down rivers and streams.	or Calculate anomalous value or using 90 percentile to cu e the data and then the 9 s percentile for anomalou s, threshold. Buffer up t n 10,000m and test spatia correlation.	is 800 ut 0 is o al	744	1,063	53	2.4	0.1	-0.7	0.1	3.1	0.2	15.3
Rock Au	Rock chip samples for gold	Calculate anomalous value using 90 percentile to cu the data and then the 9 percentile for anomalou threshold. Buffer up t 4000m and test spatia correlation.	is 400 ut 0 is o al	84	121	34	3.2	0.2	-0.7	0.2	3.9	0.3	14.6
SS Pancon Au	Geochemical sample of concentrated heav minerals from stream analysed for gold.	of Buffered point data. Buffer y every 200 metres over 400 s metres around eac anomalous sample. This wi be combined with buffer around non anomalou samples. The nonbuffere area will be missing data.	s 1000 0 h ill s s d	748	1,069	55	1.7	0.1	-1.3	0.2	2.9	0.3	10.5

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
SS Au	BLEG and ordinary sieved stream sediment samples analysed for gold. Both BLEG and Sieved stream sediment samples have similar statistica distributions.	d Buffered point data. Buffer s every 200 metres over 400 n metres around eac n anomalous sample. This wi be combined with buffer around non anomalou samples. The nonbuffere area will be missing data.	s 1,400 0 h II s s d	2,131	3,045	34	0.7	0.2	-0.5	0.2	1.2	0.3	4.7
Rock Cu	Geochemical pathfinder fo gold, which has a large geochemical signature within alteration halos around gold deposits especially with dispersion down rivers and streams.	r Calculate anomalous value r using 90 percentile to cu e the data and then the 9 s percentile for anomalou , threshold. Buffer up t n 10,000m and test spatia correlation.	s 700 ut 0 s o al	385	550	37	2.4	0.2	-0.7	0.2	3.1	0.2	12.5
SS Cu	Geochemical pathfinder fo gold, which has a large geochemical signature within alteration halos around gold deposits.	r Calculate anomalous value r using 90 percentile to cu e the data and then the 9 s percentile for anomalou threshold. Buffer up t 4000m and test spatia correlation.	s 800 ut o s o al	1,130	1,615	32	1.2	0.2	-0.6	0.2	1.8	0.3	7.0
Rock Pb	Geochemical pathfinder fo gold, which has a large geochemical signature within alteration halos around gold deposits especially with dispersion down rivers and streams.	r Calculate anomalous value r using 90 percentile to cu e the data and then the 9 s percentile for anomalou , threshold. Buffer up to n 10,000m and test spatia correlation.	s 700 ut o s o al	443	633	41	2.4	0.2	-0.6	0.2	3.0	0.2	13.5
SS Pb	Geochemical pathfinder fo gold, which has a large geochemical signature within alteration halos around gold deposits.	r Calculate anomalous value r using 90 percentile to cu the data and then the 9 s percentile for anomalou threshold. Buffer up t 4000m and test spatia correlation.	s No ut Correlation 0 s o al	Spatia I	I								None

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Rock Sb	Geochemical pathfinder for gold, which has a large geochemical signatur within alteration halo around gold deposit especially with dispersion down rivers and streams.	or Calculate anomalous value er using 90 percentile to cu re the data and then the 9 os percentile for anomalou s, threshold. Buffer up t on 10,000m and test spatia correlation.	s 700 ut o s al	81	115	37	2.3	0.2	-0.8	0.2	3.0	0.3	11.0
SS Sb	Geochemical pathfinder for gold, which has a large geochemical signatur within alteration halo around gold deposits.	or Calculate anomalous value er using 90 percentile to cu re the data and then the 9 os percentile for anomalou threshold. Buffer up t 4000m and test spatia correlation.	s 1,600 ut 0 s o al	1,629	2,327	54	0.5	0.1	-0.7	0.2	1.3	0.3	4.9
Rock W	Geochemical pathfinder for gold, which has a large geochemical signatur within alteration hald around gold deposit especially with dispersion down rivers and streams.	or Calculate anomalous value er using 90 percentile to cu re the data and then the 9 os percentile for anomalou s, threshold. Buffer up t on 10,000m and test spatia correlation.	s No ut Correlation 0 s o al	Spatial									None
SS W	Geochemical pathfinder for gold, which has a large geochemical signatur within alteration halo around gold deposits.	or Calculate anomalous value er using 90 percentile to cu re the data and then the 9 os percentile for anomalou threshold. Buffer up t 4000m and test spatia correlation.	s 1,800 ut 0 s o al	2,917	4,168	58	0.6	0.1	-1.1	0.3	1.8	0.3	5.7
Rock Zn	Geochemical pathfinder for gold, which has a large geochemical signatur within alteration halo around gold deposit especially with dispersion down rivers and streams.	or Calculate anomalous value er using 90 percentile to cu re the data and then the 9 os percentile for anomalou s, threshold. Buffer up to on 10,000m and test spatia correlation.	s 1000 ut 0 s o al	725	1,035	35	1.9	0.2	-0.7	0.2	2.6	0.3	10.2

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
SS Zn	Geochemical pathfinder for gold, which has a larger geochemical signature within alteration halos around gold deposits.	Calculate anomalous value using 90 percentile to the data and then the percentile for anomalo threshold. Buffer up 4000m and test spa correlation.	ues 2800 cut 90 bus to tial	5,450	7,786	40	0.3	0.2	-1.4	0.6	1.7	0.6	2.8
Rock Ag	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculat by defining spat correlation from buffer anomalous samp compared to buffer background samples.	ted 2 tial red les red	83	118	39	1.4	0.2	-1.2	0.3	2.6	0.3	7.5
SS Ag	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculat by defining spat correlation from buffer anomalous samp compared to buffer background samples.	ted 2 tial red les red	1,054	1,505	28	0.7	0.2	-0.3	0.2	1.1	0.2	4.3
Rock As	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculat by defining spat correlation from buffer anomalous samp compared to buffer background samples.	ted 2 tial red les red	198	283	49	1.4	0.2	-1.1	0.2	2.5	0.3	8.7
SS As	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculat by defining spat correlation from buffer anomalous samp compared to buffer background samples.	ted 2 tial red les red	1,567	2,238	66	1.0	0.1	-1.6	0.3	2.6	0.3	7.9
Rock Au	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculat by defining spat correlation from buffer anomalous samp compared to buffer background samples.	ted 2 tial red les red	122	174	41	1.3	0.2	-2.1	0.5	3.4	0.5	6.3

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
SS Pancon Au	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme can by defining correlation from the anomalous se compared to the background samples	llculated 2 spatial buffered samples buffered	768	1,098	55	1.0	0.1	-1.9	0.4	2.9	0.4	6.8
SS Au	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme can by defining correlation from to anomalous s compared to to background samples	llculated 2 spatial buffered samples buffered	1,723	2,462	32	0.7	0.2	-0.9	0.3	1.7	0.4	4.7
Rock Cu	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme can by defining correlation from the anomalous se compared to the background samples	lculated 2 spatial buffered samples buffered	385	550	37	0.6	0.2	-0.5	0.2	1.0	0.3	4.0
SS Cu	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme can by defining correlation from the anomalous se compared to the background samples	lculated 2 spatial buffered samples buffered	1,130	1,615	32	1.0	0.2	-0.7	0.2	1.6	0.3	5.8
Rock Pb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme can by defining correlation from the anomalous se compared to the background samples	lculated 2 spatial buffered samples buffered	386	551	39	0.7	0.2	-0.6	0.2	1.2	0.3	4.6
SS Pb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme ca by defining correlation from ta anomalous s compared to ta background samples	lculated 2 spatial buffered samples buffered	1,517	2,167	1	-2.8	1.0	0.3	0.1	-3.1	1.0	-3.0

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Rock Sb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculate by defining spatia correlation from buffere anomalous sample compared to buffere background samples.	d 2 al d s d	81	115	37	1.2	0.2	-0.8	0.2	2.0	0.3	6.7
SS Sb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculate by defining spatia correlation from buffere anomalous sample compared to buffere background samples.	d 2 al d s d	1,629	2,327	54	0.5	0.1	-0.8	0.2	1.4	0.3	4.9
Rock W	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculate by defining spatia correlation from buffere anomalous sample compared to buffere background samples.	d 2 al d s d	118	168	12	-0.2	0.3	0.1	0.2	-0.2	0.3	-0.6
SS W	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculate by defining spatia correlation from buffere anomalous sample compared to buffere background samples.	d 2 al d s d	2,917	4,168	58	0.7	0.1	-1.0	0.2	1.6	0.3	6.0
Rock Zn	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculate by defining spatia correlation from buffere anomalous sample compared to buffere background samples.	d 2 al d s d	725	1,035	35	0.4	0.2	-0.3	0.2	0.7	0.2	2.7
SS Zn	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculate by defining spatia correlation from buffere anomalous sample compared to buffere background samples.	d 2 al d s d	5,450	7,786	40	0.2	0.2	-0.2	0.2	0.4	0.2	1.6

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws-	С	Cs	Stud C
Alluvial Deposits	Bulk geochemical tracer	Buffer known deposits to test for a spatial correlation.	o 4,000	37,108	53,011	3	2.7	0.6	-0.9	0.7	3.6	0.9	3.9
Alluvial Deposits	Bulk geochemical tracer	Buffer known deposits to test for a spatial correlation.	o 17,000	333,97 1	477,10 2	43	0.6	0.2	-0.7	0.2	1.3	0.3	4.9

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+ Ws+	W- Ws	; C	Cs	Stud C
Internal Structure								-			
Structural Intensity	Strain	Grid density of club +lineation+foliation	eavage 3	2,778	3,969	85	1.9 0.1	-1.0 0.2	2.9	0.2	15.6
Cleavage-Bedding Angle	Regional strain	Grid angle									
Bedding Variance	Moving average of variability o bedding data, Measure o structural disruption/folding	f Gridded data, which is f reclassified into 10 categorie low variability to high variabili	then 4 es from ty	3,002	4,288	63	1.5 0.1	-0.5 0.1	2.0	0.2	11.6
Lineation Variance	Moving average of variability o lineation data, Measure o structural disruption	f Gridded data, which is f reclassified into 10 categorie low variability to high variabili	then None es from ty								None
Foliation Variance	Moving average of variability o foliation data, Measure o structural disruption	f Gridded data, which is f reclassified into 10 categorie low variability to high variabili	then 3 es from ty	1,644	2,349	8	-0.1 0.4	0.0 0.1	-0.2	2 0.4	-0.4
External Regiona Structure	l										
Crustal Faults	Crustal scale structural control	Buffered faults 20000m at intervals around faults using buffer tool	500m 3,500 g ESRI	112,591	160,845	27	1.7 0.2	-0.4 0.2	2.2	0.2	8.6
Lower Order Faults	Structural control at a loca level.	l Buffered faults 4000m at intervals around faults using buffer tool	200m 3,400 g ESRI	61,424	87,748	56	-0.4 0.1	0.7 0.1	-1.2	2 0.2	-6.3
Lower Order Fault Associated with Au	s Structural control at a loca level.	I Buffered faults 4000m at intervals around faults withi metres of known workings ESRI buffer tool	200m 2,200 n 2500 s using	19,182	27,402	38	-0.2 0.2	0.1 0.1	-0.2	2 0.2	-1.2

Spatial Variable	Measure	Technique	ID Area	Units	No.	W+	Ws+	W- \	Ns	С	Cs	Stud C
Lower Order Fau associated wit mineralisation N-Orientation	Ilt Preferred orientation th structure n	of Buffered faults 4000m at 200r intervals around faults within 250 metres of known workings usin ESRI buffer tool. Select only P faults. Select only N-trending faults	n 2,400 11,457 0 g z	16,367	59	0.2	0.1	-0.1().1	0.3	0.2	1.6
Lower Order Fau associated wit mineralisation NW Orientation	Ilt Preferred orientation th structure V-	of Buffered faults 4000m at 200r intervals around faults within 250 metres of known workings usin ESRI buffer tool. Select only P faults. Select only N-trending faults	n 3,200 2,259 0 g z	3,228	68	0.1	0.1	-0.3 ().2	0.4	0.3	1.7
Lower Order Fau associated wit mineralisation E-Orientation	Ilt Preferred orientation th structure n	of Buffered faults 4000m at 200r intervals around faults within 250 metres of known workings usin ESRI buffer tool. Select only P faults. Select only N-trending faults	n 800 188 0 g z	268	9	1.2	0.3	-0.2 ().2	1.3	0.4	3.6
Regional Fault Intensity	Structural control at a regio scale as determined intensity of faulting	nal Fault Density maps created b by creating a point every 10m along fault then gridding the density of fault points in the theme.	y 2 26,171 a of	37,387	49	1.1	0.1	-0.8 ().2	2.0	0.2	8.0
Lower Order Fault Intensity	 Structural control determined by intensity faulting 	as Fault Density maps created b of creating a point every 10m along fault then gridding the density of fault points in the theme.	y 2 12,467 a f	17,810	21	1.0	0.2	-0.2 ().1	1.2	0.3	4.8
Folds	Structural control at a lo level.	cal Buffered folds 10,000m at 200r intervals around folds within 250 metres of known workings usin ESRI buffer tool	n 2,000 18,148 0 g	25,925	6	0.6	0.4	0.0 ().1	0.7	0.4	1.6
Folds associated wit mineralisation NE Orientation	th Preferred orientation E- structure	of Buffered folds 10,000m at 200r intervals around folds within 250 metres of known workings usin ESRI buffer tool. Select only P folds. Select only NE-trending folds	n 2,400 4,669 0 g z	6,670	22	1.7	0.2	-0.3 ().2	2.0	0.3	7.8
Folds associated wit mineralisation NW Orientation	th Preferred orientation V- structure	of Buffered folds 10,000m at 200r intervals around folds within 250 metres of known workings usin ESRI buffer tool. Select only P folds. Select only NW-trending folds.	n 3,400 2,342 0 g z g	3,346	21	1.0	0.2	-0.3 ().2	1.3	0.3	4.9
Fold Tightness Density Ma	p Tightness or density of foldin	Ing. Density grid calculated from point derived from 100m split of fold axe	s 2 314 s	448	59	1.5	0.1	-1.5 ().3	3.0	0.3	9.9

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+ Ws+	W- Ws	С	Cs	Stud C
		theme.						-			
N/NE Fault Intersections	Mineralisation controlled b intersecting faults.	y Create point theme of fa intersections. Then buffer rou these points.	ault 800 Ind	2,254	3,221	7	1.5 0.4	-0.2 0.2	1.7	0.4	4.0
Fold-Fault Intersection	Mineralisation controlled b intersecting folds and faults.	y Create point theme of fa intersections. Then buffer rou these points.	ault 2,400 Ind	468	669	11	1.2 0.3	-0.2 0.1	1.4	0.3	4.1
Geology		·									
Terrain Stratigraphy	Age range.	QMAP geology.	Buller	3,163	4,519	81	3.4 0.1	-0.8 0.1	4.2	0.2	24.9
Terrain Stratigraphy	Age range.	QMAP geology.	Takaka	1,572	2,245	50	3.6 0.1	-0.4 0.1	4.0	0.2	22.8
Sequence Stratigraphy	Age range.	QMAP geology.	Devil Rive Volcanics Group	r 167	239	9	4.1 0.3	-0.1 0.1	4.2	0.4	12.0
Sequence Stratigraphy	Age range.	QMAP geology.	Golden Bay Group	y 372	531	6	2.9 0.4	0.0 0.1	3.0	0.4	7.1
Sequence Stratigraphy	Age range.	QMAP geology.	Greenland Group	2,287	3,267	75	3.6 0.1	-0.7 0.1	4.4	0.2	26.0
Sequence Stratigraphy	Age range.	QMAP geology.	Haupiri Group	247	353	13	4.1 0.3	-0.1 0.1	4.2	0.3	14.3
Sequence Stratigraphy	Age range.	QMAP geology.	Mount Arthu Group	r 724	1,034	8	2.5 0.4	-0.1 0.1	2.6	0.4	7.1
Sequence Stratigraphy	Age range.	QMAP geology.	Patriarch Group	130	185	3	3.3 0.6	0.0 0.1	3.3	0.6	5.6
Stratigraphy	Age range.	QMAP geology.	Anatoki Formation	89	127	1	2.6 1.0	0.0 0.1	2.6	1.0	2.5
Stratigraphy	Age range.	QMAP geology.	Aorangi Mine Formation	e 154	220	3	3.1 0.6	0.0 0.1	3.1	0.6	5.3
Stratigraphy	Age range.	QMAP geology.	Arthur Marble	e 123	176	1	2.2 1.0	0.0 0.1	2.2	1.0	2.2
Stratigraphy	Age range.	QMAP geology.	Aspiring lithological assoc.	3,096	4,424	1	-1.0 1.0	0.0 0.1	-1.0	1.0	-1.0
Stratigraphy	Age range.	QMAP geology.	Balloon Melange	88	126	11	5.0 0.3	-0.1 0.1	5.1	0.3	15.6
Stratigraphy	Age range.	QMAP geology.	Benson Volcanics	122	174	8	4.4 0.4	-0.1 0.1	4.4	0.4	11.9

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+ Ws+	W-	Ws	С	Cs	Stud C
Stratigraphy	Age range.	QMAP geology.	Cobb Igneous Complex	14	20	1	4.5 1.0	0.0	0.1	4.5	1.0	4.3
Stratigraphy	Age range.	QMAP geology.	Golden Bay Group	29	41	1	3.7 1.0	0.0	0.1	3.7	1.0	3.6
Stratigraphy	Age range.	QMAP geology.	Golden Bay Schist	7	10	1	5.2 1.1	0.0	0.1	5.2	1.1	4.9
Stratigraphy	Age range.	QMAP geology.	Greenland Group	1,713	2,447	72	3.9 0.1	-0.7	0.1	4.6	0.2	27.2
Stratigraphy	Age range.	QMAP geology.	Haupiri Group	63	90	9	5.2 0.4	-0.1	0.1	5.2	0.4	14.5
Stratigraphy	Age range.	QMAP geology.	Karamea Suite	1,499	2,141	2	0.4 0.7	0.0	0.1	0.4	0.7	0.6
Stratigraphy	Age range.	QMAP geology.	Leslie/Slaty Creek Formation	58	83	1	3.0 1.0	0.0	0.1	3.0	1.0	3.0
Stratigraphy	Age range.	QMAP geology.	Patriarch/Ow en Formation	35	50	2	4.2 0.7	0.0	0.1	4.2	0.7	5.8
Stratigraphy	Age range.	QMAP geology.	Roaring Lion Formation	474	678	1	0.9 1.0	0.0	0.1	0.9	1.0	0.9
Stratigraphy	Age range.	QMAP geology.	Salisbury Conglomerat e	63	89	2	3.6 0.7	0.0	0.1	3.6	0.7	5.0
Stratigraphy	Age range.	QMAP geology.	Tasman Formation	85	121	1	2.6 1.0	0.0	0.1	2.6	1.0	2.6
Stratigraphy	Age range.	QMAP geology.	Thompson Formation	9	12	1	5.0 1.0	0.0	0.1	5.0	1.0	4.8
Stratigraphy	Age range.	QMAP geology.	Waingaro Schist	87	125	6	4.4 0.4	0.0	0.1	4.4	0.4	10.4
Stratigraphy	Age range.	QMAP geology.	Wangapeka/ Baldy Formation	317	453	7	3.2 0.4	0.0	0.1	3.3	0.4	8.4
Stratigraphy	Age range.	QMAP geology.	Webb Formation	100	143	2	3.1 0.7	0.0	0.1	3.1	0.7	4.4
Rock type	Rock composition.	QMAP geology.	argillite	828	1,183	14	3.0 0.3	-0.1	0.1	3.1	0.3	10.8
Rock type	Rock composition.	QMAP geology.	basalt	148	211	8	4.2 0.4	-0.1	0.1	4.2	0.4	11.4
Rock type	Rock composition.	QMAP geology.	conglomerate	110	158	2	3.0 0.7	0.0	0.1	3.0	0.7	4.3
Rock type	Rock composition.	QMAP geology.	gabbro	484	691	1	0.9 1.0	0.0	0.1	0.9	1.0	0.9

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+ Ws+	w-	Ws	С	Cs	Stud C
Rock type	Rock composition.	QMAP geology.	granite	4,175	5,965	2	-0.6 0.7	0.0	- 0.1	-0.6	0.7	-0.9
Rock type	Rock composition.	QMAP geology.	greenschist	613	876	7	2.6 0.4	0.0	0.1	2.6	0.4	6.7
Rock type	Rock composition.	QMAP geology.	limestone	347	496	1	1.2 1.0	0.0	0.1	1.2	1.0	1.2
Rock type	Rock composition.	QMAP geology.	melange	303	433	11	3.7 0.3	-0.1	0.1	3.8	0.3	12.0
Rock type	Rock composition.	QMAP geology.	sandstone	13,175	18,822	76	1.9 0.1	-0.7	0.1	2.5	0.2	15.2
Rock type	Rock composition.	QMAP geology.	schist	18,069	25,812	1	-2.8 1.0	0.1	0.1	-2.9	1.0	-2.9
Rock type	Rock composition.	QMAP geology.	conglomerate	371	530	11	3.5 0.3	-0.1	0.1	3.6	0.3	11.4
Qtz Vein Density	Density of quartz vein	ing Create point theme from line	ar 2	478	683	57	1.4 0.1	-1.9	0.4	3.3	0.4	8.6
	representing possible cent of fluid flow.	res quartz vein theme. Then crea density map from points.	te	-		-	-	-	-		-	
Geochemistry												
Rock Ag	Geochemical pathfinder gold, which has a lar geochemical signature wit alteration halos around o	for Calculate anomalous values usir ger 90 percentile to cut the data ar hin then the 90 percentile f old anomalous threshold. Buffer up	ng No Spatia nd Correlation for to	I								None
	deposits.	4000m and test spatial correlation.										
SS Ag	Geochemical pathfinder gold, which has a lar geochemical signature wit alteration halos around g deposits, especially w	for Buffered point data. Buffers eve ger 200 metres over 4000 metre hin around each anomalous sampl old This will be combined with buffe vith around non anomalous sample	ry 1,200 es le. rs es.	1,054	1,505	29	0.7 0.2	-0.4	0.2	1.1	0.3	4.3
	dispersion down rivers a	and The nonbuffered area will k	be									
	streams.	missing data.										
Rock As	Geochemical pathfinder gold, which has a lar geochemical signature wit alteration halos around g deposits	for Calculate anomalous values usin ger 90 percentile to cut the data ar hin then the 90 percentile f old anomalous threshold. Buffer up 4000m and test spatial correlation	ng 700 nd ior to	196	280	5	1.8 0.5	-0.5	0.4	2.3	0.6	3.8
SS As	Geochemical pathfinder	for Buffered point data. Buffers eve	rv 1.400	1.567	2.238	37	1.4 0.2	-0.4	0.1	1.8	0.2	8.3
	gold, which has a lar geochemical signature with alteration halos around g deposits, especially v dispersion down rivers a streams.	ger 200 metres over 4000 metre hin around each anomalous sampl old This will be combined with buffe vith around non anomalous sample and The nonbuffered area will b missing data.	es le. ers es. oe	.,	_,			••••				
Rock Au	Rock chip samples for gold	Calculate anomalous values usir 90 percentile to cut the data ar then the 90 percentile f anomalous threshold. Buffer up	ng 600 nd for to	163	233	3	2.2 0.6	-0.6	0.6	2.9	0.8	3.5

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+	Ws+	W-	Ws	С	Cs	Stud C
		4000m and test spatial o	correlation.							-			
SS Pancon Au	Geochemical samp concentrated heavy from streams analys gold.	le of Buffered point data. B minerals 200 metres over 40 sed for around each anomalo This will be combined around non anomalou The nonbuffered are	uffers every 1,400 000 metres us sample. with buffers s samples. a will be	1,236	1,766	29	0.8	0.2	-0.5	0.2	1.3	0.3	4.8
SS Au	BLEG and ordinary stream sediment analysed for gold. Bot and Sieved stream s samples have similar s distributions.	missing data. sieved Buffered point data. B samples 200 metres over 40 h BLEG around each anomalou ediment This will be combined tatistical around non anomalou The nonbuffered are	uffers every 1,000 000 metres us sample. with buffers s samples. a will be	1,329	1,899	33	1.2	0.2	-0.6	0.2	1.8	0.3	6.9
Rock Cu	Geochemical pathfing gold, which has a geochemical signature alteration halos aroun deposits	missing data. der for Calculate anomalous v larger 90 percentile to cut th within then the 90 perc nd gold anomalous threshold. I 4000m and test spatial d	alues using 2,600 e data and centile for Buffer up to correlation	3,578	5,111	27	0.3	0.2	-0.5	0.3	0.9	0.4	2.4
SS Cu	Geochemical pathfine gold, which has a geochemical signature alteration halos aroun deposits, especially dispersion down rive	der for Buffered point data. B larger 200 metres over 40 e within around each anomalo nd gold This will be combined with around non anomalou ers and The nonbuffered are missing data	uffers every 200 000 metres us sample. with buffers s samples. a will be	174	248	12	1.7	0.3	-0.1	0.1	1.8	0.3	5.7
Rock Pb	Geochemical pathfine gold, which has a geochemical signature alteration halos aroun deposits.	der for Calculate anomalous v larger 90 percentile to cut th within then the 90 perc nd gold anomalous threshold. I 4000m and test spatial d	alues using 500 e data and centile for 3uffer up to correlation.	239	342	7	1.7	0.4	-0.1	0.2	1.8	0.4	4.5

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+ Ws+	W- Ws	С	Cs	Stud C
SS Pb	Geochemical pathfin gold, which has a geochemical signature alteration halos arou deposits, especially dispersion down rive	der for Buffered point data. Buffe larger 200 metres over 4000 e within around each anomalous nd gold This will be combined with with around non anomalous s ers and The nonbuffered area missing data	rs every 1,000 metres sample. buffers samples. will be	1,517	2,167	32	0.5 0.2	-0.2 0.1	0.7	0.2	3.1
Rock Sb	Geochemical pathfin gold, which has a geochemical signature alteration halos arou deposits	der for Calculate anomalous value larger 90 percentile to cut the c e within then the 90 percent nd gold anomalous threshold. Buff 4000m and test spatial corre	es using No Spatia lata and Correlation ile for er up to elation	I							None
SS Sb	Geochemical pathfin gold, which has a geochemical signature alteration halos arou deposits, especially dispersion down rive	der for Buffered point data. Buffe larger 200 metres over 4000 e within around each anomalous nd gold This will be combined with with around non anomalous s ers and The nonbuffered area missing data	rs every No Spatial metres Correlation sample. buffers samples. will be	I							None
Rock W	Geochemical pathfin gold, which has a geochemical signature alteration halos arou deposits.	der for Calculate anomalous value larger 90 percentile to cut the c e within then the 90 percent nd gold anomalous threshold. Buff 4000m and test spatial corre	es using No Spatial lata and Correlation ille for er up to elation.	I							None
SS W	Geochemical pathfin gold, which has a geochemical signature alteration halos arou deposits, especially dispersion down rive streams.	der for Buffered point data. Buffe larger 200 metres over 4000 e within around each anomalous nd gold This will be combined with with around non anomalous s ers and The nonbuffered area missing data.	rs every 3000 metres sample. buffers samples. will be	4,999	7,141	30	0.1 0.2	-0.6 0.4	0.7	0.5	1.5
Rock Zn	Geochemical pathfin gold, which has a geochemical signature alteration halos arou deposits.	der for Calculate anomalous value larger 90 percentile to cut the c within then the 90 percent nd gold anomalous threshold. Buff 4000m and test spatial corre	es using 400 lata and ille for er up to elation.	132	188	5	2.0 0.5	-0.1 0.2	2.1	0.5	4.4

Spatial Variable	Measure	Technique	9	ID	Area	Units	No.	W+	/s+	W- Ws	C	Cs	Stud C
SS Zn	Geochemical pa gold, which ha geochemical sign alteration halos deposits, espe dispersion down streams.	thfinder for Buffered p a larger 200 metrature within around ea around gold This will b cially with around no rivers and The nonl missing da	point data. Buffers res over 4000 ach anomalous s be combined with on anomalous sa buffered area v ata.	every 400 metres ample. buffers imples. <i>r</i> ill be	517	739	17	1.1 0	.2	-0.2 0.1	1.3	0.3	4.6
Rock Ag	Theme contains relating to geochemistry and geochemistry.	spatial area Anomaly anomalous defining background buffered compared samples.	theme calculate spatial correlatior anomalous s to buffered back	ed by 2 from amples ground	83	118	1	0.3 1	.0	-0.1 0.7	0.4	1.2	0.3
SS Ag	Theme contains relating to geochemistry and geochemistry.	spatial area Anomaly anomalous defining background buffered compared samples.	theme calculate spatial correlatior anomalous s to buffered back	ed by 2 from amples ground	1,054	1,505	29	1.1 0	.2	-0.7 0.2	1.8	0.3	6.2
Rock As	Theme contains relating to geochemistry and geochemistry.	spatial area Anomaly anomalous defining background buffered compared samples	theme calculate spatial correlatior anomalous s to buffered back	ed by 2 from amples ground	198	283	5	1.2 0	.5	-1.0 0.7	2.2	0.8	2.7
SS As	Theme contains relating to geochemistry and geochemistry.	spatial area Anomaly anomalous defining s background buffered compared	theme calculate spatial correlatior anomalous s to buffered back	ed by 2 from amples ground	1,567	2,238	37	0.9 0	.2	-1.1 0.3	2.0	0.3	5.7
Rock Au	Theme contains relating to geochemistry and geochemistry.	spatial area Anomaly anomalous defining background buffered compared samples	theme calculate spatial correlatior anomalous s to buffered back	ed by No Spatia from Correlation amples ground	al								None
SS Pancon Au	Theme contains relating to geochemistry and geochemistry.	spatial area Anomaly anomalous defining background buffered compared samples.	theme calculate spatial correlatior anomalous s to buffered back	ed by 2 from amples ground	768	1,098	20	0.9 0	.2	-1.2 0.4	2.1	0.5	4.1

Spatial Variable	Measure	Technique	ID /	Area	Units	No.	W+ Ws [.]	⊦ V	V-Ws	С	Cs	Stud C
SS Au	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated l defining spatial correlation fro buffered anomalous sample compared to buffered backgroup samples.	by 2 m es nd	1,723	2,462	37	0.8 0.2	'	1.3 0.4	2.1	0.4	5.5
Rock Cu	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated I defining spatial correlation fro buffered anomalous sample compared to buffered backgroun samples.	by 2 : m es nd	385	550	5	0.4 0.4	-(0.3 0.4	0.7	0.6	1.1
SS Cu	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated defining spatial correlation fro buffered anomalous sample compared to buffered backgroun samples.	by 2 m es nd	1,130	1,615	33	1.2 0.2	_^	1.3 0.3	2.5	0.4	6.6
Rock Pb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated la defining spatial correlation fro buffered anomalous sample compared to buffered backgroup samples.	by 2 : m es nd	386	551	7	0.7 0.4	-(0.8 0.6	1.5	0.7	2.2
SS Pb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated I defining spatial correlation fro buffered anomalous sample compared to buffered backgroup samples.	by 2 m es nd	1,517	2,167	32	0.9 0.2	-(0.8 0.3	1.8	0.3	5.7
Rock Sb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated I defining spatial correlation fro buffered anomalous sample compared to buffered backgroun samples.	by 2 m es nd									None
SS Sb	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated I defining spatial correlation fro buffered anomalous sample compared to buffered backgroup samples.	by 2 m es nd	1,629	2,327	6	-0.9 0.4	0	.4 0.2	-1.3	0.5	-2.8
Rock W	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated l defining spatial correlation fro buffered anomalous sample compared to buffered backgroun samples.	by 2 m es nd									None

Spatial Variable	Measure	Technique	ID	Area	Units	No.	W+ Ws+	W-	Ws	С	Cs	Stud C
SS W	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated b defining spatial correlation fro buffered anomalous sample compared to buffered backgrour samples.	by 2 m es nd	2,917	4,168	17	0.1 0.2	0.0	- 0.2	0.1	0.3	0.3
Rock Zn	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated be defining spatial correlation fro buffered anomalous sample compared to buffered backgrour samples.	by 2 m es nd	725	1,035	10	0.6 0.3	-0.5	0.4	1.1	0.5	2.1
SS Zn	Theme contains spatial area relating to anomalous geochemistry and background geochemistry.	Anomaly theme calculated be defining spatial correlation fro buffered anomalous sample compared to buffered backgrour samples.	by 2 m es nd	5,450	7,786	67	0.5 0.1	-0.7	0.2	1.2	0.2	5.2
Alluvial Deposits	Bulk geochemical tracer	Buffer known deposits to test for spatial correlation.	a 11,000	695,774	993,962	63	0.2 0.1	-1.4	0.5	1.7	0.5	3.2

Appendix 3 Paleozoic Spatial Correlation Results Based on Stratigraphy Appendix 3 Paleozoic Spatial Correlation Results Based on Stratigraphy

Variable ID	Area	Units	Number	W+	Ws+	W-	Ws-	С	Cs	Stud C
Anatoki Formation	88.9899	127.1285	1	2.6	1.0	0.0	0.1	2.6	1.0	2.5
Aorangi Mine Formation	153.9447	219.9209	3	3.1	0.6	0.0	0.1	3.1	0.6	5.3
Arthur Marble 1	122.8755	175.5364	1	2.2	1.0	0.0	0.1	2.2	1.0	2.2
Aspiring lithological assoc.	3096.475 8	4423.536 8	1	-1.0	1.0	0.0	0.1	-1.0	1.0	-1.0
Balloon Melange	88.3714	126.2448	11	5.0	0.3	-0.1	0.1	5.1	0.3	15.6
Benson Volcanics	121.6848	173.8354	8	4.4	0.4	-0.1	0.1	4.4	0.4	11.9
Cobb Igneous Complex	13.8067	19.7238	1	4.5	1.0	0.0	0.1	4.5	1.0	4.3
Golden Bay Group	28.6708	40.9583	1	3.7	1.0	0.0	0.1	3.7	1.0	3.6
Golden Bay Schist	7.2216	10.3166	1	5.2	1.1	0.0	0.1	5.2	1.1	4.9
Greenland Group	1712.639 6	2446.628	72	3.9	0.1	-0.7	0.1	4.6	0.2	27.2
Haupiri Group	63.3311	90.4731	9	5.2	0.4	-0.1	0.1	5.2	0.4	14.5
Karamea Suite	1498.977 1	2141.395 8	2	0.4	0.7	0.0	0.1	0.4	0.7	0.6
Leslie/Slaty Creek Formation	57.8911	82.7016	1	3.0	1.0	0.0	0.1	3.0	1.0	3.0
Patriarch/Owen Formation	35.0754	50.1077	2	4.2	0.7	0.0	0.1	4.2	0.7	5.8
Roaring Lion Formation	474.2767	677.5381	1	0.9	1.0	0.0	0.1	0.9	1.0	0.9
Salisbury Conglomerate	62.6012	89.4303	2	3.6	0.7	0.0	0.1	3.6	0.7	5.0
Tasman Formation	85.0384	121.4834	1	2.6	1.0	0.0	0.1	2.6	1.0	2.6
Thompson Formation	8.5747	12.2496	1	5.0	1.0	0.0	0.1	5.0	1.0	4.8
Waingaro Schist	87.2005	124.5721	6	4.4	0.4	0.0	0.1	4.4	0.4	10.4
Wangapeka/Baldy Formation	317.139	453.0558	7	3.2	0.4	0.0	0.1	3.3	0.4	8.4
Webb Formation	100.3334	143.3334	2	3.1	0.7	0.0	0.1	3.1	0.7	4.4

Appendix 4 Paleozoic Spatial Correlation Results Based on Lithology Appendix 4 Paleozoic Spatial Correlation Results Based on Lithology

Variable ID	Area	Units	Number	W+	Ws+	W-	Ws-	С	Cs	Stud C
argillite	828.3189	1183.313	14	3.0	0.3	-0.1	0.1	3.1	0.3	10.8
basalt	147.5123	210.7319	8	4.2	0.4	-0.1	0.1	4.2	0.4	11.4
conglomerate	110.4324	157.7605	2	3.0	0.7	0.0	0.1	3.0	0.7	4.3
conglomerate	371.1175	530.1678	11	3.5	0.3	-0.1	0.1	3.6	0.3	11.4
gabbro	483.7883	691.1261	1	0.9	1.0	0.0	0.1	0.9	1.0	0.9
granite	4175.15	5964.5	2	-0.6	0.7	0.0	0.1	-0.6	0.7	-0.9
greenschist	613.4484	876.3548	7	2.6	0.4	0.0	0.1	2.6	0.4	6.7
limestone	347.2371	496.0531	1	1.2	1.0	0.0	0.1	1.2	1.0	1.2
melange	302.9656	432.808	11	3.7	0.3	-0.1	0.1	3.8	0.3	12.0
sandstone	13175.11	18821.59	76	1.9	0.1	-0.7	0.1	2.5	0.2	15.2
schist	18068.62	25812.31	1	-2.8	1.0	0.1	0.1	-2.9	1.0	-2.9

Appendix 5

Mesozoic Spatial Correlation Results Based on Stratigraphy Appendix 5 Mesozoic Spatial Correlation Results Based on Stratigraphy

Variable ID	Area	Units	Number	W+		Ws+	W-	Ws	s- C	ះ Cs	5	Stud C
Wakamarina Quartzite	10	14	1		4.60	1.04		-0.01	0.07	4.61	1.04	4.43
Aspiring lithologic association	103	148	3		3.28	0.58		-0.02	0.07	3.29	0.59	5.60
Aspiring Lithological Associatio	2,903	4,147	45		2.64	0.15		-0.27	0.09	2.91	0.17	16.85
Haast Schist	5,623	8,034	56		2.19	0.13		-0.33	0.09	2.53	0.16	15.70
Star Formation	142	203	1		1.85	1.00)	0.00	0.07	1.85	1.01	1.84
Wanaka Lithological	2,026	2,895	13		1.75	0.28		-0.06	0.08	1.81	0.29	6.29
Association												
Caples Group	8,538	12,198	36		1.33	0.17	•	-0.17	0.08	1.50	0.19	8.04
Aspiring lithological assoc.	3,096	4,424	4		0.15	0.50)	0.00	0.08	0.15	0.51	0.30
Esk Head Belt	983	1,404	1		-0.09	1.00)	0.00	0.07	-0.09	1.00	-0.09

Appendix 6 Mesozoic Spatial Correlation Results Based on Lithology Appendix 6 Mesozoic Spatial Correlation Results Based on Lithology

Variable ID	Area	Units	Number	W+		Ws+	W-		Ws-	С	С	s	Stud C
metapelite	3,318	4,740	45		2.51	0.1	5	-0.26	0.0)9	2.77	0.17	16.06
quartzite	110	157	1		2.10	1.0	C	0.00	0.0)7	2.11	1.01	2.09
schist	18,069	25,812	108		1.68	0.1	C	-0.78	0.1	12	2.46	0.15	16.32
mylonite	285	408	1		1.15	1.0	C	0.00	0.0)7	1.15	1.00	1.14
greenschist	613	876	2		1.07	0.7	1	-0.01	0.0)7	1.08	0.71	1.52
semischist	3,281	4,687	5		0.31	0.4	5	-0.01	0.0)8	0.32	0.45	0.70
sandstone	13,175	18,822	12		-0.20	0.2	9	0.02	0.0)8	-0.22	0.30	-0.73
metasandstone	3,303	4,719	3		-0.21	0.5	В	0.00	0.0)7	-0.21	0.58	-0.36

Appendix 7 Geochemical Statistical Summary

Appendix 7

Data Set	Upper Cut	Total Analysed	Lower Threshold	Total Used	Total Anomal	Average	SD	Paleoz oic	Pale ozoi	Paleozoic Spatial Zone (m)	Paleoz oic	Mesozoi c	Meso zoic	Mes ozoi	Mesoz oic
	- u	, mai joou			ous			Traini	C C		StudC	Spatial	Train	C C	StudC
								ng	Train			Zone	ing	Train	
								Used	ing			(m)	Used	ing	
									d					d	
RK Ag	0.1 ppm	1369	0.001	1223	142	8.7	76.9	144	-	No Spatial Correlation	NA	600	182	39	14.1
SS Ag	1.3 ppm	9444	0.7 ppm	8282	1248	3	35.9	144	29	1,200	4.3	1,200	182	28	6.1
RK As	452 ppm	2239	50 ppm	1368	433	5581.6	25444	144	5	700	3.8	600	182	49	14.1
SS As	60 ppm	5958	40 ppm	5375	1137	120.3	518.8	144	37	1,400	8.3	800	182	53	15.3
RK Au	1000 ppb	1872	70 ppb	1685	373	5778.2	16807.3	144	3	600	3.5	400	182	34	14.6
SS Au	190 ppb	7880	40 ppb	7096											
SS Au PC	712 ppb	2237	119.8 ppb	2013	426	14253.7	67094.4	144	29	1,400	4.7	1,000	182	55	10.5
SS AL BLEG	1 3320	199	1820 ppb	179											
SS AL Sieve	l 80 ppb	5444	17 ppb	4907											
SS Au B&S	100 ppb	5643	20 ppb	5102	1077	1543.7	11311.2	144	33	1,000	6.9	1,400	182	34	4.7
RK Cu	67 ppm	2523	39 ppm	2272	500	194.3	649.4	144	27	2,600	2.4	700	182	37	12.5
SS Cu	55 ppm	15232	39.2 ppm	13719	2885	93.2	449.2	144	12	200	5.7	800	182	32	6.9
RK Pb	27 ppm	2562	20 ppm	2314	551	104.5	825.5	144	7	500	4.4	700	182	41	13.5
SS Pb	35 ppm	14512	28 ppm	13259	2725	56.7	450.7	144	32	1,000	3.1	No Spatial	182		NA
												Correlati			
												on			
RK Sb	32 ppm	841	13 ppm	757	166	716.7	6923.6	144		No Spatial Correlation	NA	700	182	37	11.0
SS Sb	1.9 ppm	3091	0.38 ppm	2783	588	59.4	960.2	144		No Spatial Correlation	NA	1,600	182	54	4.9
RK W	365 ppm	659	19.6 ppm	593	126	6666.2	24800.6	144		No Spatial Correlation	NA	No	182		NA
												Spatial Correlati			
												on			
SS W	34 ppm	6856	14 ppm	6183	1318	218.7	3382.8	144	30	3,000	1.4	1,800	182	58	5.7
RK Zn	110 ppm	2546	91 ppm	2303	481	154.6	336.3	144	5	400	4.4	1,000	182	35	10.2
SS Zn	110 ppm	14589	92 ppm	13165	2798	188.9	925.5	144	17	400	4.6	2,800	182	40	2.8