Presentations
Kenex staff regularly present their work at conferences and workshops in New Zealand, Australia and Internationally. Have a look at our latest video presentations or scroll back through our archives below.
Land Use Optimization with GIS
The Southern New England Orogen Mineral Potential Project
The SouthernThe Southern New England Orogen (SNEO) in the north-eastern part of New South Wales (NSW) in Australia is prospective for intrusion-related tin-tungsten, intrusion-related gold-bismuth-molybdenum-silver, and orogenic gold-antimony mineral systems. An initiative by the Geological Survey of NSW to conduct mineral potential modelling for these mineralisation styles in the SNEO has resulted in a comprehensive account of the mineral resource potential of the region.
The Geological Survey of NSW has a successful strategy of providing high quality pre-competitive data that has been complemented and enhanced by the mineral potential mapping approach. Datasets including seamless basement geology, detailed attribution of faults, and igneous fertility that were created by the survey prior to modelling enabled an extensive number of variables be tested using spatial statistics for relevance to each mineral system. The feedback from the data processing and spatial analysis allowed improvements to be made to the data and provided information on the relevance of the datasets to mineral exploration in the region.
The outputs of the empirical models are mineral potential maps that map the geological potential of the SNEO for each mineralisation style. The models are being used for land planning and advice purposes, technical resources for improved mineral system studies (including global endowment estimations), and for promoting exploration in the SNEO through the generation of prospective targets. Due to the richness of the geoscience datasets in NSW, the technique - including the creation of high-quality datasets combined with mineral potential modelling - is now being applied to other regions and mineral systems within NSW, and is readily applicable to any other area or mineral system of interest.
Mineral Potential Mapping for Land Management and Exploration Decision Making: A case study from the Southern New England Orogen
Using gravity to target gold at Tampia Hill, Western Australia
The discovery of the Tampia Hill orogenic gold deposit in the wheatbelt of Western Australia has sparked interest in this under-explored region of the state. The deposit is hosted within a granulite facies greenstone belt, with mineralisation mostly hosted in mafic gneiss, which has been intruded by undeformed and unmetamorphosed granite. A lack of outcrop in the project area has meant that geophysics has been vital for interpretation of the geology. A recent gravity and magnetic survey has allowed the most detailed interpretation of the underlying lithology and structures to date, and has highlighted previously unknown areas of mafic gneiss, with a similar signature to that at Tampia Hill. In order to extract the most useful information from the survey, spatial statistical analyses were conducted on the gravity survey data. The analyses over the project area map features within the gravity data that can be used to identify areas of known gold mineralisation. The results confirm that the gravity data not only provides critical geological information, but will also allow the identification of high priority targets for future exploration using spatial data modelling techniques.
Downhole Logging in 3D Geology and Mineral Potential Modelling
Logging of drillholes using wireline tools is an emerging methodology in mineral exploration that adds valuable data to exploration drilling. RC drilling is relatively cheap and quick, but it comes with the price of lost sample integrity and structural coherence. Wireline logging can cover this loss, by facilitating structural interpretations based on borewall imagery. Rock property data can also be recovered below the sampling resolution, such as optical televiewer (OTV) imagery, density, magnetic properties, natural gamma radiation and acoustic properties on cm and even mm scale. In the field, wireline logging will add just a few days to the drilling programme. A team of wireline technicians run their wireline down a recently completed drillhole using an assortment of tools depending on the requests of the client, at a cost amounting to only a few dollars per metre. The tools are oriented with magnetometers and accelerometers, enabling directional logging of geological features the drilling passed through. Combined with on-site logging of lithology and data from tools used in the field, wireline logging will enable exploration to take a significant step towards complete understanding of the prospect geology. In this paper we show downhole logging results from Tampia Hill, Western Australia, and how this work has been used to establish a structural framework and guide the creation of 3D geological and mineral potential models
The Southern New England Orogen Mineral Potential Project
The Southern New England Orogen (SNEO) in the northeastern part of New South Wales (NSW) is prospective for intrusion-related tin-tungsten, intrusion-related gold-bismuth-molybdenum-silver and orogenic goldantimony mineral systems. An initiative by the Geological Survey of NSW to conduct mineral potential modelling for these mineralisation styles in the SNEO has resulted in a comprehensive account of the mineral resource potential of the region. The Geological Survey of NSW has a successful strategy of providing high quality pre-competitive data that has been complemented and enhanced by the mineral potential mapping approach. Datasets including seamless basement geology, detailed attribution of faults, and igneous fertility that were created by the survey prior to modelling enabled an extensive number of variables be tested for relevance to each mineral system. The feedback from the data processing and spatial analysis allowed improvements to be made to the data and provided information on the relevance of the datasets to mineral exploration in the region. The outputs of the models are mineral potential maps that map the geological potential of the SNEO for each mineralisation style. The models will be used for land planning and advice purposes, technical resources for improved mineral system studies including global endowment estimations, and for promoting exploration in the SNEO through the generation of prospective targets. Due to the richness of the geological datasets in NSW it is likely that the technique, including the creation of high-quality datasets combined with mineral potential modelling, can be successfully applied to other mineralised regions within NSW.
Drilling in the Gold Paddock
Mineral Prospectivity Modelling in New Zealand: Review and Future Perspectives
Mineral prospectivity modelling using geographic information systems (GIS) has been used in New Zealand since 2002 both by the government, to promote mineral exploration in New Zealand, and industry, to inform project acquisition and increase the efficiency of exploration programmes. Over the last 15 years at least 38 mineral prospectivity models have been completed in New Zealand covering most of the hard rock mineralised regions onshore as well as nodular phosphate offshore on the Chatham Rise.
Analysis of highly prospective targets generated from the models already completed in New Zealand provides important information about the mineral potential of the country. Onshore, highly prospective targets over a range of commodities cover only 0.5 percent of the total land area of New Zealand, significantly narrowing the search area for new mineral deposits. 83 percent of the targets occur outside public conservation land, and 45 percent of the targets are unpermitted at the time of writing, suggesting there is potential for increased exploration investment and for new discoveries to be made. Prospectivity modelling has had a measureable positive impact on exploration activity and project development in New Zealand over the last 15 years. Future work should include incorporating new data into existing models, modelling new areas when data becomes available, improving existing mineral occurrence datasets, 3D prospectivity modelling, modelling of other commodities such as coal, alluvial gold and ironsand, infrastructure modelling, and exploration effectiveness analysis.
Mineral Prospectivity Modelling as a Tool for Resource and Mine Development
Prospectivity models in the last ten years have been predominantly used to establish the distribution of potentially mineralised ground over large areas, generally to guide initial exploration programmes in regional and mine camp settings. This approach can also be applied to the mine scale to guide resource estimation, development of reserves, mine and environmental planning, project development and to extend mine life through discovery of new resources. The Chatham Rise phosphate deposit is used as an example of where the results from prospectivity mapping can be used to guide mine planning, help with resource optimisation and provide constraints for project development. In this example the prospectivity results were combined with environmental modelling to help with environmental planning and the avoidance of sensitive areas, as well as guide mine planning. Another example compares a feasibility study to a prospectivity model over the same area. Prospectivity is an indicator of potential mineralisation presence, if not necessarily directly correlated to the actual concentration of resource present. Thus prospectivity mapping can be used to guide resource estimation and steer future efforts of resource definition and upgrading. An effective way this can be done is by using the prospectivity equivalent of the resource lower cut-off value to indicate where mineralisation may potentially be present outside the established regions. Confidence and unique conditions grids can then be used to establish what types of data needs to be gathered and where, to increase the reliability of the result.
Enhancing regional and national economic development from mineral projects: The use of spatial analysis to inform on infrastructure deficit in Canada
A Canada National Infrastructure spatial analysis has been completed for the Prospectors and Developers Association of Canada (PDAC). The objective was to identify the Canadian districts where strategic investment in enhancing the infrastructure network could stimulate the development of new mines by reducing the overall capital costs of production. This was achieved by spatially analysing the relationship between infrastructure deficient regions and the location of significant, undeveloped mineral deposits. After compiling a comprehensive dataset of the existing infrastructure in Canada, the available information was classified and weighted based of their importance to mineral extraction. The most relevant datasets – including infrastructure, elevation and climatic data as well as cultural data such as distribution of population – have been combined using spatial modelling techniques to create a “remoteness” map of the country.
The “remoteness” map has then been compared with potential mining/advanced exploration projects in order to identify areas where strategic investment by provincial and federal government could stimulate new mineral development and therefore regional economic development. The completed spatial model has highlighted where investment would be most beneficial. Furthermore, a series of more specific cost-related maps have been produced for two categories of mineral commodities, precious minerals and base metals. The two categories differ in mining methods and quantities of minerals extracted; therefore requiring different types of infrastructure for operating. These additional models show the percentage increase of potential costs for building and maintaining a mining project related to the increase in remoteness. The results of the heat maps clearly identify regions where the enhancement of specific types of infrastructure could drastically decrease the overall costs of a precious mineral or base metal project and therefore encourage its development by making it economically feasible. The model results will allow the PDAC to work with appropriate government departments to prioritise the most prospective mining opportunities in infrastructure deficient areas and therefore efficiently propose a workflow of possible enhancements to local infrastructures to encourage the development of new mines in the identified areas.